Empirical study of hybrid particle swarm optimizers with the simplex method operator

Fang Wang, Yuhui Qiu
{"title":"Empirical study of hybrid particle swarm optimizers with the simplex method operator","authors":"Fang Wang, Yuhui Qiu","doi":"10.1109/ISDA.2005.44","DOIUrl":null,"url":null,"abstract":"A novel hybrid simplex method and particle swarm optimization (HSMPSO) algorithm is presented in this article. Computational experiments on variety of benchmark functions indicate this SM-PSO hybrid is a promising way for locating global optima of continuous multimodal functions. Although very easy to be implemented, the hybrid method yields competitive results in both reliability and efficiency compared to other published algorithms. We provide an extensive analysis of the impact of the parameters of our hybrid algorithm on its performance as well.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A novel hybrid simplex method and particle swarm optimization (HSMPSO) algorithm is presented in this article. Computational experiments on variety of benchmark functions indicate this SM-PSO hybrid is a promising way for locating global optima of continuous multimodal functions. Although very easy to be implemented, the hybrid method yields competitive results in both reliability and efficiency compared to other published algorithms. We provide an extensive analysis of the impact of the parameters of our hybrid algorithm on its performance as well.
基于单纯形算子的混合粒子群优化算法的实证研究
提出了一种新的单纯形算法和粒子群优化算法(HSMPSO)。各种基准函数的计算实验表明,该方法是一种很有前途的连续多模态函数全局最优定位方法。虽然该方法非常容易实现,但与其他已发表的算法相比,该方法在可靠性和效率方面都具有竞争力。我们还对混合算法的参数对其性能的影响进行了广泛的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信