Benchmarking Monolithic 3D Integration for Compute-in-Memory Accelerators: Overcoming ADC Bottlenecks and Maintaining Scalability to 7nm or Beyond

Xiaochen Peng, W. Chakraborty, Ankit Kaul, Wonbo Shim, M. Bakir, S. Datta, Shimeng Yu
{"title":"Benchmarking Monolithic 3D Integration for Compute-in-Memory Accelerators: Overcoming ADC Bottlenecks and Maintaining Scalability to 7nm or Beyond","authors":"Xiaochen Peng, W. Chakraborty, Ankit Kaul, Wonbo Shim, M. Bakir, S. Datta, Shimeng Yu","doi":"10.1109/IEDM13553.2020.9372091","DOIUrl":null,"url":null,"abstract":"This paper presents 3D NeuroSim, a benchmark framework of monolithic 3D (M3D) integrated compute-in-memory (CIM) accelerators. To address the challenges of analog-to-digital converter (ADC) overhead and scaling limitations caused by high write voltage in emerging nonvolatile memory (eNVM), we propose partitioning the circuit modules in hybrid technology nodes across two stacked tiers with massive inter-tier vias. This framework features versatile back-end-of-line (BEOL)-compatible transistors, including laser-recrystallized silicon transistor and oxide transistor, and analyzes the thermal profile for M3D integration. Finally, we benchmark the CIM accelerators for VGG-8 on CIFAR-10 and reveal the substantial benefits in energy efficiency of a hybrid M3D architecture (45nm eNVM array+7nm ADC and logic).","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9372091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents 3D NeuroSim, a benchmark framework of monolithic 3D (M3D) integrated compute-in-memory (CIM) accelerators. To address the challenges of analog-to-digital converter (ADC) overhead and scaling limitations caused by high write voltage in emerging nonvolatile memory (eNVM), we propose partitioning the circuit modules in hybrid technology nodes across two stacked tiers with massive inter-tier vias. This framework features versatile back-end-of-line (BEOL)-compatible transistors, including laser-recrystallized silicon transistor and oxide transistor, and analyzes the thermal profile for M3D integration. Finally, we benchmark the CIM accelerators for VGG-8 on CIFAR-10 and reveal the substantial benefits in energy efficiency of a hybrid M3D architecture (45nm eNVM array+7nm ADC and logic).
内存中计算加速器的单片3D集成基准测试:克服ADC瓶颈并保持7nm或更高的可扩展性
本文介绍了3D NeuroSim,一个集成内存计算(CIM)加速器的基准框架。为了解决新兴非易失性存储器(eNVM)中高写入电压引起的模数转换器(ADC)开销和缩放限制的挑战,我们建议将混合技术节点中的电路模块划分为两个堆叠层,并具有大量的层间通孔。该框架具有多种后端线(BEOL)兼容晶体管,包括激光再结晶硅晶体管和氧化物晶体管,并分析了M3D集成的热分布。最后,我们在CIFAR-10上对VGG-8的CIM加速器进行了基准测试,并揭示了混合M3D架构(45nm eNVM阵列+7nm ADC和逻辑)在能效方面的巨大优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信