Data-Driven Kernels via Semi-supervised Clustering on the Manifold

Jared Lundell, Charles DuHadway, D. Ventura
{"title":"Data-Driven Kernels via Semi-supervised Clustering on the Manifold","authors":"Jared Lundell, Charles DuHadway, D. Ventura","doi":"10.1109/ICMLA.2015.135","DOIUrl":null,"url":null,"abstract":"We present an approach to transductive learning that employs semi-supervised clustering of all available data (both labeled and unlabeled) to produce a data-dependent SVM kernel. In the general case where the domain includes irrelevant or redundant attributes, we constrain the clustering to occur on the manifold prescribed by the data (both labeled and unlabeled). Empirical results show that the approach performs comparably to more traditional kernels while providing significant reduction in the number of support vectors used. Further, the kernel construction technique provides some of the benefits that would normally be provided by dimensionality reduction preprocessing step.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an approach to transductive learning that employs semi-supervised clustering of all available data (both labeled and unlabeled) to produce a data-dependent SVM kernel. In the general case where the domain includes irrelevant or redundant attributes, we constrain the clustering to occur on the manifold prescribed by the data (both labeled and unlabeled). Empirical results show that the approach performs comparably to more traditional kernels while providing significant reduction in the number of support vectors used. Further, the kernel construction technique provides some of the benefits that would normally be provided by dimensionality reduction preprocessing step.
基于流形上半监督聚类的数据驱动核
我们提出了一种转换学习方法,该方法采用所有可用数据(包括标记和未标记)的半监督聚类来产生数据依赖的SVM核。在域包含不相关或冗余属性的一般情况下,我们将聚类限制在数据指定的流形上(标记和未标记)。经验结果表明,该方法的性能与更传统的内核相当,同时显著减少了所使用的支持向量的数量。此外,核构造技术提供了通常由降维预处理步骤提供的一些好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信