Predictive Regression and Robust Hypothesis Testing: Predictability Hidden by Anomalous Observations

Lorenzo Camponovo, O. Scaillet, O. Scaillet, F. Trojani, Fabio Trojani
{"title":"Predictive Regression and Robust Hypothesis Testing: Predictability Hidden by Anomalous Observations","authors":"Lorenzo Camponovo, O. Scaillet, O. Scaillet, F. Trojani, Fabio Trojani","doi":"10.2139/ssrn.2080766","DOIUrl":null,"url":null,"abstract":"Testing procedures for predictive regressions with lagged autoregressive variables imply a suboptimal inference in presence of small violations of ideal assumptions. We propose a novel testing framework resistant to such violations, which is consistent with nearly integrated regressors and applicable to multi-predictor settings, when the data may only approximately follow a predictive regression model. The Monte Carlo evidence demonstrates large improvements of our approach, while the empirical analysis produces a strong robust evidence of market return predictability, using predictive variables such as the dividend yield, the volatility risk premium or labor income.","PeriodicalId":425229,"journal":{"name":"ERN: Hypothesis Testing (Topic)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Hypothesis Testing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2080766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Testing procedures for predictive regressions with lagged autoregressive variables imply a suboptimal inference in presence of small violations of ideal assumptions. We propose a novel testing framework resistant to such violations, which is consistent with nearly integrated regressors and applicable to multi-predictor settings, when the data may only approximately follow a predictive regression model. The Monte Carlo evidence demonstrates large improvements of our approach, while the empirical analysis produces a strong robust evidence of market return predictability, using predictive variables such as the dividend yield, the volatility risk premium or labor income.
预测回归与稳健假设检验:异常观测隐藏的可预测性
具有滞后自回归变量的预测回归的测试程序意味着在存在对理想假设的小违反时的次优推断。我们提出了一种新的测试框架,该框架与近集成回归一致,适用于多预测器设置,当数据可能仅近似地遵循预测回归模型时。蒙特卡洛证据表明我们的方法有很大的改进,而实证分析产生了强有力的市场回报可预测性的证据,使用预测变量,如股息收益率,波动性风险溢价或劳动收入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信