Application of learning theory to a single phase induction motor incipient fault detector artificial neural network

M. Chow, G. Bilbro, S. Yee
{"title":"Application of learning theory to a single phase induction motor incipient fault detector artificial neural network","authors":"M. Chow, G. Bilbro, S. Yee","doi":"10.1109/ANN.1991.213504","DOIUrl":null,"url":null,"abstract":"The generalization ability of a neural network in a specific application is of interest to many neural network designers. Learning theory, derived from maximum entropy, is applied to a neural network used for incipient fault detection in single-phase induction motors. The authors use learning theory to predict the proper number of training examples needed to reach a specific accuracy level (before actually training the network), so that excessive and unnecessary training examples and training time can be avoided. The results of learning theory are compared to actual training results to show the efficiency and reliability of the use of learning theory.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The generalization ability of a neural network in a specific application is of interest to many neural network designers. Learning theory, derived from maximum entropy, is applied to a neural network used for incipient fault detection in single-phase induction motors. The authors use learning theory to predict the proper number of training examples needed to reach a specific accuracy level (before actually training the network), so that excessive and unnecessary training examples and training time can be avoided. The results of learning theory are compared to actual training results to show the efficiency and reliability of the use of learning theory.<>
学习理论在单相感应电动机早期故障检测人工神经网络中的应用
神经网络在特定应用中的泛化能力是许多神经网络设计者感兴趣的问题。将基于最大熵的学习理论应用于单相异步电动机早期故障检测的神经网络。作者使用学习理论来预测达到特定精度水平所需的训练样例的适当数量(在实际训练网络之前),从而可以避免过多和不必要的训练样例和训练时间。将学习理论的结果与实际训练结果进行了比较,表明了学习理论应用的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信