Parameterization of speech signals for robust voice recognition

Youssef Zouhir, K. Ouni
{"title":"Parameterization of speech signals for robust voice recognition","authors":"Youssef Zouhir, K. Ouni","doi":"10.1109/CISTEM.2014.7076915","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a speech parameterization technique based on a compressive Gammachirp filterbank. This filterbank represents a reliable model of the cochlear auditory filter and provides a good approximation of their spectral and selective behaviour. The recognition performance of our technique is tested on isolated-words extracted from the TIMIT database. The adopted speech recognition system is the HTK.3.4.1 platform based on Hidden Markov Models with Gaussian-Mixture densities. The evaluation results showed that the proposed technique gives better recognition rate compared to conventional techniques: PLP (Perceptual Linear Prediction) and LPCC (Linear Prediction Cepstral Coefficient).","PeriodicalId":115632,"journal":{"name":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISTEM.2014.7076915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a speech parameterization technique based on a compressive Gammachirp filterbank. This filterbank represents a reliable model of the cochlear auditory filter and provides a good approximation of their spectral and selective behaviour. The recognition performance of our technique is tested on isolated-words extracted from the TIMIT database. The adopted speech recognition system is the HTK.3.4.1 platform based on Hidden Markov Models with Gaussian-Mixture densities. The evaluation results showed that the proposed technique gives better recognition rate compared to conventional techniques: PLP (Perceptual Linear Prediction) and LPCC (Linear Prediction Cepstral Coefficient).
鲁棒语音识别中语音信号的参数化
本文提出了一种基于压缩Gammachirp滤波器组的语音参数化技术。该滤波器组代表了耳蜗听觉滤波器的可靠模型,并提供了其频谱和选择行为的良好近似。对从TIMIT数据库中提取的孤立词进行了识别性能测试。所采用的语音识别系统是基于高斯混合密度隐马尔可夫模型的HTK.3.4.1平台。评价结果表明,与传统的感知线性预测(PLP)和线性预测倒谱系数(LPCC)相比,该方法具有更好的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信