NSK, an object-oriented simulator kernel for arbitrary feedforward neural networks

Cédric Gégout, Bernard Girau, Fabrice Rossi
{"title":"NSK, an object-oriented simulator kernel for arbitrary feedforward neural networks","authors":"Cédric Gégout, Bernard Girau, Fabrice Rossi","doi":"10.1109/TAI.1994.346508","DOIUrl":null,"url":null,"abstract":"An object-oriented neural network simulator kernel is presented. It as based on a general mathematical model for arbitrary feedforward nets. We propose a C++ implementation of this model which satisfies the following requirements: expandability (allowing an easy implementation of a new neural model), portability and efficiency (the kernel does not increase significantly its computation times for classic models, compared to a direct object-oriented implementation). Learning algorithms such as gradient-based ones can be written for arbitrary nets and are therefore directly available for every particular model.<<ETX>>","PeriodicalId":262014,"journal":{"name":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1994.346508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An object-oriented neural network simulator kernel is presented. It as based on a general mathematical model for arbitrary feedforward nets. We propose a C++ implementation of this model which satisfies the following requirements: expandability (allowing an easy implementation of a new neural model), portability and efficiency (the kernel does not increase significantly its computation times for classic models, compared to a direct object-oriented implementation). Learning algorithms such as gradient-based ones can be written for arbitrary nets and are therefore directly available for every particular model.<>
NSK,一个面向对象的仿真内核,用于任意前馈神经网络
提出了一种面向对象的神经网络仿真内核。它基于任意前馈网络的一般数学模型。我们提出这个模型的c++实现,它满足以下要求:可扩展性(允许一个新的神经模型的简单实现),可移植性和效率(与直接面向对象的实现相比,内核不会显著增加经典模型的计算时间)。诸如基于梯度的学习算法可以为任意的网络编写,因此可以直接用于每个特定的模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信