Nearest neighbor-based importance weighting

M. Loog
{"title":"Nearest neighbor-based importance weighting","authors":"M. Loog","doi":"10.1109/MLSP.2012.6349714","DOIUrl":null,"url":null,"abstract":"Importance weighting is widely applicable in machine learning in general and in techniques dealing with data co-variate shift problems in particular. A novel, direct approach to determine such importance weighting is presented. It relies on a nearest neighbor classification scheme and is relatively straightforward to implement. Comparative experiments on various classification tasks demonstrate the effectiveness of our so-called nearest neighbor weighting (NNeW) scheme. Considering its performance, our procedure can act as a simple and effective baseline method for importance weighting.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Importance weighting is widely applicable in machine learning in general and in techniques dealing with data co-variate shift problems in particular. A novel, direct approach to determine such importance weighting is presented. It relies on a nearest neighbor classification scheme and is relatively straightforward to implement. Comparative experiments on various classification tasks demonstrate the effectiveness of our so-called nearest neighbor weighting (NNeW) scheme. Considering its performance, our procedure can act as a simple and effective baseline method for importance weighting.
基于最近邻的重要性加权
重要性加权在机器学习中有着广泛的应用,特别是在处理数据协变量移位问题的技术中。提出了一种新的、直接的方法来确定这种重要性加权。它依赖于最近邻分类方案,实现起来相对简单。各种分类任务的对比实验证明了我们所谓的最近邻加权(NNeW)方案的有效性。考虑到它的性能,我们的方法可以作为一种简单有效的重要性加权基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信