{"title":"Vulnerability of Distributed Inverter VAR Control in PV Distributed Energy System","authors":"Bo Tu, Wen-Tai Li, C. Yuen","doi":"10.1109/SmartGridComm52983.2022.9960972","DOIUrl":null,"url":null,"abstract":"This work studies the potential vulnerability of distributed control schemes in smart grids. To this end, we consider an optimal inverter VAR control problem within a PV integrated distribution network. First, we formulate the centralized optimization problem considering the reactive power priority and further reformulate the problem into a distributed framework by an accelerated proximal projection method. The inverter controller can curtail the PV output of each user by clamping the reactive power. To illustrate the studied distributed control scheme that may be vulnerable due to the two-hop information communication pattern, we present a heuristic attack injecting false data during the information exchange. Then we analyze the attack impact on the update procedure of critical parameters. A case study with an eight-node test feeder demonstrates that adversaries can violate the constraints of distributed control scheme without being detected through simple attacks such as the proposed attack.","PeriodicalId":252202,"journal":{"name":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm52983.2022.9960972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This work studies the potential vulnerability of distributed control schemes in smart grids. To this end, we consider an optimal inverter VAR control problem within a PV integrated distribution network. First, we formulate the centralized optimization problem considering the reactive power priority and further reformulate the problem into a distributed framework by an accelerated proximal projection method. The inverter controller can curtail the PV output of each user by clamping the reactive power. To illustrate the studied distributed control scheme that may be vulnerable due to the two-hop information communication pattern, we present a heuristic attack injecting false data during the information exchange. Then we analyze the attack impact on the update procedure of critical parameters. A case study with an eight-node test feeder demonstrates that adversaries can violate the constraints of distributed control scheme without being detected through simple attacks such as the proposed attack.