Numerical Modeling of Phan-Thien-Tanner Viscoelastic Fluid Flow Through a Square Cross-Section Duct: Heat Transfer Enhancement due to Shear-Thinning Effects
Fouad Hagani, M. Boutaous, R. Knikker, S. Xin, D. Siginer
{"title":"Numerical Modeling of Phan-Thien-Tanner Viscoelastic Fluid Flow Through a Square Cross-Section Duct: Heat Transfer Enhancement due to Shear-Thinning Effects","authors":"Fouad Hagani, M. Boutaous, R. Knikker, S. Xin, D. Siginer","doi":"10.1115/IMECE2018-87568","DOIUrl":null,"url":null,"abstract":"Non-isothermal laminar flow of a viscoelastic fluid through a square cross-section duct is analyzed. Viscoelastic stresses are described by the Phan-Thien – Tanner model and the solvent shear stress is given by the linear Newtonian constitutive relationship. The solution of the set of governing equations spawns coupling between equations of elliptic-hyperbolic type. Our numerical approach is based on the finite-differences method. To treat the hyperbolic part, the system of equations are rewritten in a quasilinear form. The resulting pure advection terms are discretized using high-order upwind schemes when the hyper bolicity condition is satisfied. The incompressibility condition is obtained by the semi-implicit projection method. Finally we investigate the evolution of velocity, shear stress, viscosity and heat transfer over a wide range of Weissenberg numbers.","PeriodicalId":229616,"journal":{"name":"Volume 7: Fluids Engineering","volume":"384 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Non-isothermal laminar flow of a viscoelastic fluid through a square cross-section duct is analyzed. Viscoelastic stresses are described by the Phan-Thien – Tanner model and the solvent shear stress is given by the linear Newtonian constitutive relationship. The solution of the set of governing equations spawns coupling between equations of elliptic-hyperbolic type. Our numerical approach is based on the finite-differences method. To treat the hyperbolic part, the system of equations are rewritten in a quasilinear form. The resulting pure advection terms are discretized using high-order upwind schemes when the hyper bolicity condition is satisfied. The incompressibility condition is obtained by the semi-implicit projection method. Finally we investigate the evolution of velocity, shear stress, viscosity and heat transfer over a wide range of Weissenberg numbers.