Rotation control of polygonal prism by multi-legged robot

G. Takeo, T. Takubo, K. Ohara, Y. Mae, T. Arai
{"title":"Rotation control of polygonal prism by multi-legged robot","authors":"G. Takeo, T. Takubo, K. Ohara, Y. Mae, T. Arai","doi":"10.1109/AMC.2010.5464064","DOIUrl":null,"url":null,"abstract":"Rotation is one of efficient transportation methods for big or heavy object. For implementing the rolling operation to the small and light weight robot, it is necessary to consider the movable range of the robot, balance, actuator power and friction control. In this paper, we propose a new method of forward and backward rolling manipulation by using whole body motion for multi-legged robot. To control the balance, the weight shift control considering the Imaginary Zero Moment Point (IZMP) of the object is implemented. When the IZMP is beside the support polygon of the object, the object has rotational force. The rotational force is controlled by the force from the robot, and it can be manipulated by controlling the robot's CoM position and the internal force generated by joint actuators. The internal force can adjust the rotational force but it should be generated considering the friction forces between the object and the floor etc. We analyze available internal force with friction by kinematic solution, and it is implemented to the small multi-legged robot by using position and torque control. The effectiveness is confirmed through experiments.","PeriodicalId":406900,"journal":{"name":"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2010.5464064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Rotation is one of efficient transportation methods for big or heavy object. For implementing the rolling operation to the small and light weight robot, it is necessary to consider the movable range of the robot, balance, actuator power and friction control. In this paper, we propose a new method of forward and backward rolling manipulation by using whole body motion for multi-legged robot. To control the balance, the weight shift control considering the Imaginary Zero Moment Point (IZMP) of the object is implemented. When the IZMP is beside the support polygon of the object, the object has rotational force. The rotational force is controlled by the force from the robot, and it can be manipulated by controlling the robot's CoM position and the internal force generated by joint actuators. The internal force can adjust the rotational force but it should be generated considering the friction forces between the object and the floor etc. We analyze available internal force with friction by kinematic solution, and it is implemented to the small multi-legged robot by using position and torque control. The effectiveness is confirmed through experiments.
多足机器人多角镜的旋转控制
旋转是大型或重型物体的有效运输方式之一。对小而轻的机器人实施滚动操作,需要考虑机器人的活动范围、平衡、作动器功率和摩擦控制。本文提出了一种利用全身运动控制多足机器人前后滚动的新方法。为了控制平衡,实现了考虑物体虚零力矩点(IZMP)的移权控制。当IZMP在物体的支撑多边形旁边时,物体具有旋转力。旋转力由机器人的力来控制,可以通过控制机器人的CoM位置和关节执行器产生的内力来操纵。内力可以调节旋转力,但应考虑物体与地板之间的摩擦力等因素而产生。利用运动学解分析摩擦力作用下的可用内力,并利用位置和力矩控制将其应用于小型多足机器人。通过实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信