Yujing Wang, Jun Ren, Weixuan Zhang, Lu He, Xiangdong Zhang
{"title":"Topologically Protected Strong Coupling and Entanglement Between Distant Quantum Emitters","authors":"Yujing Wang, Jun Ren, Weixuan Zhang, Lu He, Xiangdong Zhang","doi":"10.1103/physrevapplied.14.054007","DOIUrl":null,"url":null,"abstract":"The realization of robust strong coupling and entanglement between distant quantum emitters (QEs) is very important for scalable quantum information processes. However, it is hard to achieve it based on conventional systems. Here, we propose theoretically and demonstrate numerically a scheme to realize such strong coupling and entanglement. Our scheme is based on the photonic crystal platform with topologically protected edge state and zero-dimensional topological corner cavities. When the QEs are put into topological cavities, the strong coupling between them can be fulfilled with the assistance of the topologically protected interface state. Such a strong coupling can maintain a very long distance and be robust against various defects. Especially, we numerically prove that the topologically protected entanglement between two QEs can also be realized. Moreover, the duration of quantum beats for such entanglement can reach several orders longer than that for the entanglement in a conventional photonic cavity, making it be very beneficial for a scalable quantum information process.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevapplied.14.054007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The realization of robust strong coupling and entanglement between distant quantum emitters (QEs) is very important for scalable quantum information processes. However, it is hard to achieve it based on conventional systems. Here, we propose theoretically and demonstrate numerically a scheme to realize such strong coupling and entanglement. Our scheme is based on the photonic crystal platform with topologically protected edge state and zero-dimensional topological corner cavities. When the QEs are put into topological cavities, the strong coupling between them can be fulfilled with the assistance of the topologically protected interface state. Such a strong coupling can maintain a very long distance and be robust against various defects. Especially, we numerically prove that the topologically protected entanglement between two QEs can also be realized. Moreover, the duration of quantum beats for such entanglement can reach several orders longer than that for the entanglement in a conventional photonic cavity, making it be very beneficial for a scalable quantum information process.