Multiclass Diabetes Detection Using Random Forest Classification

Amjed Al-mousa, Laith AlKhdour, Hatem Bishawi, Fares AlShubeliat
{"title":"Multiclass Diabetes Detection Using Random Forest Classification","authors":"Amjed Al-mousa, Laith AlKhdour, Hatem Bishawi, Fares AlShubeliat","doi":"10.1109/JEEIT58638.2023.10185679","DOIUrl":null,"url":null,"abstract":"Detecting diabetes at an early stage can help save lives and improve the patients quality of life significantly. Diabetes can be detected with the assistance of information regarding the patient's lifestyle and health. This work aims to predict diabetic patients using different machine-learning classification algorithms and a dataset about diabetic and healthy patients. The work employs a data balancing technique to handle the data imbalance issue, as well as using cross-validation. In addition, it compares these machine-learning algorithms according to several performance indicators like accuracy, precision, recall, and Fl-score. Accordingly, the Random Forest classifier proved to produce the best results with accuracy, precision, recall, and an Fl-score, all equal to 89%.","PeriodicalId":177556,"journal":{"name":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEEIT58638.2023.10185679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting diabetes at an early stage can help save lives and improve the patients quality of life significantly. Diabetes can be detected with the assistance of information regarding the patient's lifestyle and health. This work aims to predict diabetic patients using different machine-learning classification algorithms and a dataset about diabetic and healthy patients. The work employs a data balancing technique to handle the data imbalance issue, as well as using cross-validation. In addition, it compares these machine-learning algorithms according to several performance indicators like accuracy, precision, recall, and Fl-score. Accordingly, the Random Forest classifier proved to produce the best results with accuracy, precision, recall, and an Fl-score, all equal to 89%.
基于随机森林分类的多类糖尿病检测
在早期发现糖尿病可以帮助挽救生命并显著改善患者的生活质量。糖尿病可以在患者生活方式和健康信息的帮助下被发现。这项工作旨在使用不同的机器学习分类算法和关于糖尿病患者和健康患者的数据集来预测糖尿病患者。该工作采用数据平衡技术来处理数据不平衡问题,并使用交叉验证。此外,它还根据几个性能指标(如准确性、精度、召回率和l-score)对这些机器学习算法进行比较。因此,随机森林分类器被证明在准确性、精密度、召回率和fl分数方面产生了最好的结果,都等于89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信