Power spectrum estimation and PAPR analysis for Cognitive Radio Networks

B. Suseela, D. Sivakumar
{"title":"Power spectrum estimation and PAPR analysis for Cognitive Radio Networks","authors":"B. Suseela, D. Sivakumar","doi":"10.1109/ICCSP.2014.6950135","DOIUrl":null,"url":null,"abstract":"Most of the existing works consider the estimation of power spectrum. However, they did not provide the implementation of power spectrum estimation. In order to provide an efficient solution, in this paper, we propose power spectrum estimation and PAPR analysis for Cognitive Radio Networks (CRN). In this technique, power spectrum value of each node is calculated by computing autocorrelation. This power spectrum value is compared with five methods namely Periodogram spectral estimate, Bartlett's spectral estimate, Welch spectral estimate, Blackman Tukey spectral estimate and Correlogram spectral estimate. The difference in transmitted signal can be measured in terms of Peak-to-Average-Power-Ratio (PAPR). Finally, PAPR analysis is performed using the complementary cumulative distribution function (CCDF). The proposed technique is simulated in MATLAB.","PeriodicalId":149965,"journal":{"name":"2014 International Conference on Communication and Signal Processing","volume":"58 23","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Communication and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2014.6950135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Most of the existing works consider the estimation of power spectrum. However, they did not provide the implementation of power spectrum estimation. In order to provide an efficient solution, in this paper, we propose power spectrum estimation and PAPR analysis for Cognitive Radio Networks (CRN). In this technique, power spectrum value of each node is calculated by computing autocorrelation. This power spectrum value is compared with five methods namely Periodogram spectral estimate, Bartlett's spectral estimate, Welch spectral estimate, Blackman Tukey spectral estimate and Correlogram spectral estimate. The difference in transmitted signal can be measured in terms of Peak-to-Average-Power-Ratio (PAPR). Finally, PAPR analysis is performed using the complementary cumulative distribution function (CCDF). The proposed technique is simulated in MATLAB.
认知无线网络功率谱估计与PAPR分析
现有的研究大都考虑了功率谱的估计。然而,他们没有提供功率谱估计的实现。为了提供有效的解决方案,本文提出了认知无线电网络(CRN)的功率谱估计和PAPR分析。该方法通过计算自相关来计算各节点的功率谱值。将该功率谱值与周期谱估计、Bartlett谱估计、Welch谱估计、Blackman Tukey谱估计和相关谱估计五种方法进行了比较。传输信号的差异可以用峰值与平均功率比(PAPR)来测量。最后,利用互补累积分布函数(CCDF)进行PAPR分析。在MATLAB中对该方法进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信