Densifying SLAM for UAV Navigation by Fusion of Monocular Depth Prediction

Yassine Habib, P. Papadakis, C. L. Barz, Antoine Fagette, Tiago Gonçalves, Cédric Buche
{"title":"Densifying SLAM for UAV Navigation by Fusion of Monocular Depth Prediction","authors":"Yassine Habib, P. Papadakis, C. L. Barz, Antoine Fagette, Tiago Gonçalves, Cédric Buche","doi":"10.1109/ICARA56516.2023.10125712","DOIUrl":null,"url":null,"abstract":"Simultaneous Localization and Mapping (SLAM) research has reached a level of maturity enabling systems to build autonomously an accurate sparse map of the environment while localizing themselves in that map. At the same time, the use of deep learning has recently brought great improvements in Monocular Depth Prediction (MDP). Some applications such as autonomous drone navigation and obstacle avoidance require dense structure information and cannot only rely on sparse SLAM representation. We propose to densify a state-of-the-art SLAM algorithm using deep learning-based dense MDP at keyframe rate. Towards this goal, we describe a scale recovery from SLAM landmarks by minimizing a depth error metric combined with a multi-view depth refinement using a volumetric approach. We conclude with experiments that attest the added value of our approach in terms of depth estimation.","PeriodicalId":443572,"journal":{"name":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA56516.2023.10125712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Simultaneous Localization and Mapping (SLAM) research has reached a level of maturity enabling systems to build autonomously an accurate sparse map of the environment while localizing themselves in that map. At the same time, the use of deep learning has recently brought great improvements in Monocular Depth Prediction (MDP). Some applications such as autonomous drone navigation and obstacle avoidance require dense structure information and cannot only rely on sparse SLAM representation. We propose to densify a state-of-the-art SLAM algorithm using deep learning-based dense MDP at keyframe rate. Towards this goal, we describe a scale recovery from SLAM landmarks by minimizing a depth error metric combined with a multi-view depth refinement using a volumetric approach. We conclude with experiments that attest the added value of our approach in terms of depth estimation.
基于单目深度预测融合的SLAM无人机导航
同时定位和绘图(SLAM)研究已经达到成熟的水平,使系统能够自主构建精确的环境稀疏地图,同时在该地图中对自己进行定位。与此同时,深度学习的使用最近给单目深度预测(MDP)带来了巨大的改进。一些应用,如自主无人机导航和避障需要密集的结构信息,不能仅仅依赖于稀疏的SLAM表示。我们建议在关键帧速率下使用基于深度学习的密集MDP来强化最先进的SLAM算法。为了实现这一目标,我们通过最小化深度误差度量和使用体积方法的多视图深度细化来描述SLAM地标的尺度恢复。最后,我们用实验证明了我们的方法在深度估计方面的附加价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信