A Proximal Algorithm for Estimating the Regularized Wavelet-Based Density-Difference

N. Mijatovic, Rana Haber, G. Anagnostopoulos, Anthony O. Smith, A. Peter
{"title":"A Proximal Algorithm for Estimating the Regularized Wavelet-Based Density-Difference","authors":"N. Mijatovic, Rana Haber, G. Anagnostopoulos, Anthony O. Smith, A. Peter","doi":"10.1109/CSCI49370.2019.00127","DOIUrl":null,"url":null,"abstract":"Density-Difference (DD) estimation is an important unsupervised learning procedure that proceeds many regression methods. The present work details a novel method for estimating the Difference of Densities (DoD) between two distributions. This new method directly calculates the DD, in the form of a wavelet expansion, without the need for explicitly reconstructing individual distributions. Furthermore, the method applies a regularization technique that utilizes both l2 and l1 norm penalties to robustly estimate the coefficients of the wavelet expansion. Optimizing the regularized objective is accomplished via a Proximal Gradient Descent (PGD) approach. Thus, we term our method Regularized Wavelet-based Density-Difference (RWDD) with PGD. On extensive simulated datasets, from complex multimodal to skewed distributions, our method demonstrated superior performance in comparison to other contemporary techniques.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"428 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Density-Difference (DD) estimation is an important unsupervised learning procedure that proceeds many regression methods. The present work details a novel method for estimating the Difference of Densities (DoD) between two distributions. This new method directly calculates the DD, in the form of a wavelet expansion, without the need for explicitly reconstructing individual distributions. Furthermore, the method applies a regularization technique that utilizes both l2 and l1 norm penalties to robustly estimate the coefficients of the wavelet expansion. Optimizing the regularized objective is accomplished via a Proximal Gradient Descent (PGD) approach. Thus, we term our method Regularized Wavelet-based Density-Difference (RWDD) with PGD. On extensive simulated datasets, from complex multimodal to skewed distributions, our method demonstrated superior performance in comparison to other contemporary techniques.
一种估计正则小波密度差的近端算法
密度差(DD)估计是一个重要的无监督学习过程,许多回归方法都离不开它。本文详细介绍了一种估算两种分布密度差(DoD)的新方法。这种新方法以小波展开的形式直接计算DD,而不需要明确地重建单个分布。此外,该方法采用正则化技术,利用l2和l1范数惩罚来稳健地估计小波展开的系数。通过近端梯度下降(PGD)方法实现正则化目标的优化。因此,我们将我们的方法称为正则化小波密度差(RWDD)与PGD。在广泛的模拟数据集上,从复杂的多模态分布到偏态分布,我们的方法与其他当代技术相比表现出优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信