Jakob Struye, H. Ravuri, Hany Assasa, Claudio Fiandrino, Filip Lemic, Joerg Widmer, J. Famaey, M. T. Vega
{"title":"Opportunities and Challenges for Virtual Reality Streaming over Millimeter-Wave: An Experimental Analysis","authors":"Jakob Struye, H. Ravuri, Hany Assasa, Claudio Fiandrino, Filip Lemic, Joerg Widmer, J. Famaey, M. T. Vega","doi":"10.1109/NoF55974.2022.9942535","DOIUrl":null,"url":null,"abstract":"Achieving extremely high-quality and truly immersive interactive Virtual Reality (VR) is expected to require a wireless link to the cloud, providing multi-gigabit throughput and extremely low latency. A prime candidate for fulfilling these requirements is millimeter-wave (mmWave) communications, operating in the 30 to 300 GHz bands, rather than the traditional sub-6 GHz. Evaluations with first-generation mmWave Wi-Fi hardware, based on the IEEE 802.11ad standard, have so far largely remained limited to lower-layer metrics. In this work, we present the first experimental analysis of the capabilities of mmWave for streaming VR content, using a novel testbed capable of repeatably creating blockage through mobility. Using this testbed, we show that (a) motion may briefly interrupt transmission, (b) a broken line of sight may degrade throughput unpredictably, and (c) TCP-based streaming frameworks need careful tuning to behave well over mmWave.","PeriodicalId":223811,"journal":{"name":"2022 13th International Conference on Network of the Future (NoF)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Network of the Future (NoF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NoF55974.2022.9942535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Achieving extremely high-quality and truly immersive interactive Virtual Reality (VR) is expected to require a wireless link to the cloud, providing multi-gigabit throughput and extremely low latency. A prime candidate for fulfilling these requirements is millimeter-wave (mmWave) communications, operating in the 30 to 300 GHz bands, rather than the traditional sub-6 GHz. Evaluations with first-generation mmWave Wi-Fi hardware, based on the IEEE 802.11ad standard, have so far largely remained limited to lower-layer metrics. In this work, we present the first experimental analysis of the capabilities of mmWave for streaming VR content, using a novel testbed capable of repeatably creating blockage through mobility. Using this testbed, we show that (a) motion may briefly interrupt transmission, (b) a broken line of sight may degrade throughput unpredictably, and (c) TCP-based streaming frameworks need careful tuning to behave well over mmWave.