{"title":"The Azzalini Skew-t Information Matrix Evaluation and Use for Standard Error Calculations","authors":"Chindhanai Uthaisaad, Doug Martin","doi":"10.2139/ssrn.3258025","DOIUrl":null,"url":null,"abstract":"The Azzalini skew-t distributions are popular because of their theoretical foundation and the availability of computational methods in the R package sn. One difficulty with this skew-t family is that the elements of the expected information matrix do not have closed form analytic formulas. Thus, we developed a numerical integration method of computing the expected information matrix in the R package skewtInfo. The accuracy of our expected information matrix calculation method was confirmed by comparing the result with that obtained using an observed information matrix for a very large sample size. A Monte Carlo study to evaluate the accuracy of the finite-sample standard errors obtained with our expected information matrix calculation method, for the case of three realistic skew-t parameter vectors, indicates that use of the expected information matrix results in standard errors as accurate as, and sometimes a little more accurate than, use of an observed information matrix.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3258025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Azzalini skew-t distributions are popular because of their theoretical foundation and the availability of computational methods in the R package sn. One difficulty with this skew-t family is that the elements of the expected information matrix do not have closed form analytic formulas. Thus, we developed a numerical integration method of computing the expected information matrix in the R package skewtInfo. The accuracy of our expected information matrix calculation method was confirmed by comparing the result with that obtained using an observed information matrix for a very large sample size. A Monte Carlo study to evaluate the accuracy of the finite-sample standard errors obtained with our expected information matrix calculation method, for the case of three realistic skew-t parameter vectors, indicates that use of the expected information matrix results in standard errors as accurate as, and sometimes a little more accurate than, use of an observed information matrix.