Co-evolution-based parameter learning for remote sensing scene classification

Di Zhang, Yichen Zhou, Jiaqi Zhao, Yong Zhou
{"title":"Co-evolution-based parameter learning for remote sensing scene classification","authors":"Di Zhang, Yichen Zhou, Jiaqi Zhao, Yong Zhou","doi":"10.1142/s0219691321500466","DOIUrl":null,"url":null,"abstract":"The appropriate setting of hyperparameter is a key factor to determine the performance of the deep learning model. Efficient hyperparametric optimization algorithm can not only improve the efficiency and speed of model hyperparametric optimization, but also reduce the application threshold of deep learning model. Therefore, we propose a parameter learning algorithm-based co-evolutionary for remote sensing scene classification. First, a co-evolution framework is proposed to optimize the optimizer’s hyperparameters and weight parameters of the convolutional neural networks (CNNs) simultaneously. Second, with the strategy of co-evolution with two populations, the hyperparameters can learn within the population and the weights of CNN can be updated by utilizing information between the populations. Finally, the parallel computing mechanism is adapted to speed up the learning process, as the two populations can evolve simultaneously. Extensive experiments on three public datasets demonstrate the effectiveness of the proposed approach.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"4 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691321500466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The appropriate setting of hyperparameter is a key factor to determine the performance of the deep learning model. Efficient hyperparametric optimization algorithm can not only improve the efficiency and speed of model hyperparametric optimization, but also reduce the application threshold of deep learning model. Therefore, we propose a parameter learning algorithm-based co-evolutionary for remote sensing scene classification. First, a co-evolution framework is proposed to optimize the optimizer’s hyperparameters and weight parameters of the convolutional neural networks (CNNs) simultaneously. Second, with the strategy of co-evolution with two populations, the hyperparameters can learn within the population and the weights of CNN can be updated by utilizing information between the populations. Finally, the parallel computing mechanism is adapted to speed up the learning process, as the two populations can evolve simultaneously. Extensive experiments on three public datasets demonstrate the effectiveness of the proposed approach.
基于协同进化的遥感场景分类参数学习
超参数的适当设置是决定深度学习模型性能的关键因素。高效的超参数优化算法不仅可以提高模型超参数优化的效率和速度,还可以降低深度学习模型的应用门槛。为此,我们提出了一种基于参数学习算法的协同进化遥感场景分类方法。首先,提出了一种协同进化框架,对卷积神经网络的超参数和权参数进行同步优化。其次,采用两个种群的协同进化策略,超参数可以在种群内学习,并且可以利用种群之间的信息更新CNN的权重。最后,采用并行计算机制来加快学习过程,因为两个种群可以同时进化。在三个公共数据集上进行的大量实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信