Subword-based multi-span pronunciation adaptation for recognizing accented speech

Timo Mertens, Kit Thambiratnam, F. Seide
{"title":"Subword-based multi-span pronunciation adaptation for recognizing accented speech","authors":"Timo Mertens, Kit Thambiratnam, F. Seide","doi":"10.1109/ASRU.2011.6163940","DOIUrl":null,"url":null,"abstract":"We investigate automatic pronunciation adaptation for non-native accented speech by using statistical models trained on multi-span lingustic parse tables to generate candidate mispronunciations for a target language. Compared to traditional phone re-writing rules, parse table modeling captures more context in the form of phone-clusters or syllables, and encodes abstract features such as word-internal position or syllable structure. The proposed approach is attractive because it gives a unified method for combining multiple levels of linguistic information. The reported experiments demonstrate word error rate reductions of up to 7.9% and 3.3% absolute on Italian and German accented English using lexicon adaptation alone, and 12.4% and 11.3% absolute when combined with acoustic adaptation.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate automatic pronunciation adaptation for non-native accented speech by using statistical models trained on multi-span lingustic parse tables to generate candidate mispronunciations for a target language. Compared to traditional phone re-writing rules, parse table modeling captures more context in the form of phone-clusters or syllables, and encodes abstract features such as word-internal position or syllable structure. The proposed approach is attractive because it gives a unified method for combining multiple levels of linguistic information. The reported experiments demonstrate word error rate reductions of up to 7.9% and 3.3% absolute on Italian and German accented English using lexicon adaptation alone, and 12.4% and 11.3% absolute when combined with acoustic adaptation.
基于子词的多跨距语音自适应识别重音语音
我们通过使用在多跨语言解析表上训练的统计模型来研究非母语口音语音的自动发音适应,以生成目标语言的候选错误发音。与传统的电话重写规则相比,解析表建模以电话簇或音节的形式捕获更多上下文,并对单词内部位置或音节结构等抽象特征进行编码。该方法具有一定的吸引力,因为它提供了一种统一的方法来组合多层次的语言信息。实验表明,仅使用词汇适应,意大利语和德语口音英语的单词错误率分别降低了7.9%和3.3%,结合声学适应,错误率分别降低了12.4%和11.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信