Enterprise Alexandria: Online High-Precision Enterprise Knowledge Base Construction with Typed Entities

J. Winn, M. Venanzi, T. Minka, Ivan Korostelev, J. Guiver, Elena Pochernina, Pavel Mishkov, Alex Spengler, Denise J. Wilkins, Siân E. Lindley, Richard Banks, Sam Webster, Yordan Zaykov
{"title":"Enterprise Alexandria: Online High-Precision Enterprise Knowledge Base Construction with Typed Entities","authors":"J. Winn, M. Venanzi, T. Minka, Ivan Korostelev, J. Guiver, Elena Pochernina, Pavel Mishkov, Alex Spengler, Denise J. Wilkins, Siân E. Lindley, Richard Banks, Sam Webster, Yordan Zaykov","doi":"10.24432/C5JS3X","DOIUrl":null,"url":null,"abstract":"We present Enterprise Alexandria, a new system for automatically constructing a knowledge base with high-precision and typed entities from private enterprise data such as emails, documents and intranet pages. Built as an extension of Alexandria [Winn et al., 2019], the key novelty of Enterprise Alexandria is the ability in processing both the textual information and the structured metadata available in each document in an online learning fashion, making use of any manual curations that have happened in the interim. This task is performed entirely eyes-off to respect the privacy of the user and the restricted access their documents. The knowledge discovery process uses a probabilistic program defining the process of generating the data item from a set of unknown typed entities. Using probabilistic inference, Enterprise Alexandria can jointly discover a large set of entities with custom types specific to the organization. Experiments on three real-world datasets show that the system outperforms alternative methods with the ability to work effectively at large scale.","PeriodicalId":371465,"journal":{"name":"Conference on Automated Knowledge Base Construction","volume":"01 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Automated Knowledge Base Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24432/C5JS3X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present Enterprise Alexandria, a new system for automatically constructing a knowledge base with high-precision and typed entities from private enterprise data such as emails, documents and intranet pages. Built as an extension of Alexandria [Winn et al., 2019], the key novelty of Enterprise Alexandria is the ability in processing both the textual information and the structured metadata available in each document in an online learning fashion, making use of any manual curations that have happened in the interim. This task is performed entirely eyes-off to respect the privacy of the user and the restricted access their documents. The knowledge discovery process uses a probabilistic program defining the process of generating the data item from a set of unknown typed entities. Using probabilistic inference, Enterprise Alexandria can jointly discover a large set of entities with custom types specific to the organization. Experiments on three real-world datasets show that the system outperforms alternative methods with the ability to work effectively at large scale.
Enterprise Alexandria:基于类型化实体的在线高精度企业知识库构建
我们介绍了Enterprise Alexandria,这是一个新的系统,用于从私人企业数据(如电子邮件、文档和内部网页面)中自动构建具有高精度和类型化实体的知识库。作为Alexandria的扩展[Winn等人,2019],Enterprise Alexandria的关键新颖之处在于能够以在线学习的方式处理每个文档中可用的文本信息和结构化元数据,并利用在此期间发生的任何手动管理。为了尊重用户的隐私和限制对其文档的访问,该任务是完全闭眼执行的。知识发现过程使用概率程序定义从一组未知类型实体生成数据项的过程。使用概率推理,Enterprise Alexandria可以共同发现具有特定于组织的自定义类型的大型实体集。在三个真实数据集上的实验表明,该系统在大规模有效工作的能力上优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信