Derived Tensor Products and Their Applications

F. Bulnes
{"title":"Derived Tensor Products and Their Applications","authors":"F. Bulnes","doi":"10.5772/intechopen.92869","DOIUrl":null,"url":null,"abstract":"In this research we studied t he tensor product on derived categories of Étale sheaves with transfers considering as fundamental, the tensor product of categories X ⊗ Y ¼ X (cid:2) Y , on the category Cor k , (finite correspondences category) by under-standing it to be the product of the underlying schemes on k . Although, to this is required to build a total tensor product on the category PST( k ), where this construction will be useful to obtain generalizations on derived categories using pre-sheaves and contravariant and covariant functors on additive categories to define the exactness of infinite sequences and resolution of spectral sequences. Some concrete applications are given through a result on field equations solution.","PeriodicalId":189982,"journal":{"name":"Advances on Tensor Analysis and their Applications","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances on Tensor Analysis and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this research we studied t he tensor product on derived categories of Étale sheaves with transfers considering as fundamental, the tensor product of categories X ⊗ Y ¼ X (cid:2) Y , on the category Cor k , (finite correspondences category) by under-standing it to be the product of the underlying schemes on k . Although, to this is required to build a total tensor product on the category PST( k ), where this construction will be useful to obtain generalizations on derived categories using pre-sheaves and contravariant and covariant functors on additive categories to define the exactness of infinite sequences and resolution of spectral sequences. Some concrete applications are given through a result on field equations solution.
派生张量积及其应用
在本研究中,我们研究了将转移视为基本的Étale轴的派生范畴上的张量积,范畴X⊗Y¼X (cid:2) Y在范畴Cor k(有限对应范畴)上的张量积,将其理解为k上的基础方案的积。虽然,这需要在范畴PST(k)上建立一个总张量积,其中这种构造将有助于在使用预束和可加范畴上的逆变和协变函子的派生范畴上获得推广,以定义无穷序列的准确性和谱序列的分辨率。通过对场方程求解的结果,给出了一些具体应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信