Max-Min Ant Colony Optimization Method for Edge Detection Exploiting a New Heuristic Information Function

Saba Kheirinejad, S. Hasheminejad, N. Riahi
{"title":"Max-Min Ant Colony Optimization Method for Edge Detection Exploiting a New Heuristic Information Function","authors":"Saba Kheirinejad, S. Hasheminejad, N. Riahi","doi":"10.1109/ICCKE.2018.8566516","DOIUrl":null,"url":null,"abstract":"Edge detection is a substantial operation in machine vision and image processing. Recently, many ant colony optimization (ACO) algorithms have been exploited for a wide range of optimization problem such as edge detection. In this study, we apply the max-min ant colony optimization (MMACO) method to detect the image edges. Moreover, we propose a new heuristic information function (HIF) namely group based heuristic information function (GBHIF) to determine the nodes which ants visit around their place. Our proposed HIF exploits the difference between the intensity of two groups of nodes instead of two single one. In the simulation result section we show that the robustness of proposed edge detection algorithm is more than that of the previous algorithms.","PeriodicalId":283700,"journal":{"name":"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"802 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE.2018.8566516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Edge detection is a substantial operation in machine vision and image processing. Recently, many ant colony optimization (ACO) algorithms have been exploited for a wide range of optimization problem such as edge detection. In this study, we apply the max-min ant colony optimization (MMACO) method to detect the image edges. Moreover, we propose a new heuristic information function (HIF) namely group based heuristic information function (GBHIF) to determine the nodes which ants visit around their place. Our proposed HIF exploits the difference between the intensity of two groups of nodes instead of two single one. In the simulation result section we show that the robustness of proposed edge detection algorithm is more than that of the previous algorithms.
基于新启发式信息函数的边缘检测的最大最小蚁群优化方法
边缘检测是机器视觉和图像处理中的一项重要操作。近年来,许多蚁群优化算法被用于边缘检测等广泛的优化问题。在本研究中,我们采用最大最小蚁群优化(MMACO)方法来检测图像的边缘。此外,我们提出了一种新的启发式信息函数(HIF),即基于群体的启发式信息函数(GBHIF)来确定蚂蚁在其所在位置周围访问的节点。我们提出的HIF利用两组节点之间的强度差异,而不是两组节点之间的强度差异。在仿真结果部分,我们证明了所提出的边缘检测算法的鲁棒性优于以往的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信