I Know What You Did Last Summer: Network Monitoring using Interval Queries

Nikita Ivkin, Ran Ben Basat, Zaoxing Liu, Gil Einziger, R. Friedman, V. Braverman
{"title":"I Know What You Did Last Summer: Network Monitoring using Interval Queries","authors":"Nikita Ivkin, Ran Ben Basat, Zaoxing Liu, Gil Einziger, R. Friedman, V. Braverman","doi":"10.1145/3393691.3394193","DOIUrl":null,"url":null,"abstract":"Modern telemetry systems require advanced analytic capabilities such as drill down queries. These queries can be used to detect the beginning and end of a network anomaly by efficiently refining the search space. We present the first integral solution that (i) enables multiple measurement tasks inside the same data structure, (ii) supports specifying the time frame of interest as part of its queries, and (iii) is sketch-based and thus space efficient. Namely, our approach allows the user to define both the measurement task (e.g., heavy hitters, entropy estimation, cardinality estimation) and the time frame of relevance (e.g., 5PM-6PM) at query time. Our approach provides accuracy guarantees and is the only space-efficient solution that offers such capabilities. Finally, we demonstrate how the algorithm can be used to accurately pinpoint the beginning of a realistic DDoS attack.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3393691.3394193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Modern telemetry systems require advanced analytic capabilities such as drill down queries. These queries can be used to detect the beginning and end of a network anomaly by efficiently refining the search space. We present the first integral solution that (i) enables multiple measurement tasks inside the same data structure, (ii) supports specifying the time frame of interest as part of its queries, and (iii) is sketch-based and thus space efficient. Namely, our approach allows the user to define both the measurement task (e.g., heavy hitters, entropy estimation, cardinality estimation) and the time frame of relevance (e.g., 5PM-6PM) at query time. Our approach provides accuracy guarantees and is the only space-efficient solution that offers such capabilities. Finally, we demonstrate how the algorithm can be used to accurately pinpoint the beginning of a realistic DDoS attack.
我知道你去年夏天做了什么:使用间隔查询进行网络监控
现代遥测系统需要先进的分析能力,如钻取查询。这些查询可以通过有效地优化搜索空间来检测网络异常的开始和结束。我们提出了第一个完整的解决方案,它(i)在同一数据结构中实现多个测量任务,(ii)支持指定感兴趣的时间框架作为其查询的一部分,(iii)基于草图,因此空间效率高。也就是说,我们的方法允许用户在查询时定义度量任务(例如,重击者,熵估计,基数估计)和相关的时间框架(例如,下午5点到下午6点)。我们的方法提供了准确性保证,并且是提供此类功能的唯一节省空间的解决方案。最后,我们演示了如何使用该算法准确地定位现实DDoS攻击的开始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信