Bayesian clustering of optical flow fields

J. Hoey, J. Little
{"title":"Bayesian clustering of optical flow fields","authors":"J. Hoey, J. Little","doi":"10.1109/ICCV.2003.1238470","DOIUrl":null,"url":null,"abstract":"We present a method for unsupervised learning of classes of motions in video. We project optical flow fields to a complete, orthogonal, a-priori set of basis functions in a probabilistic fashion, which improves the estimation of the projections by incorporating uncertainties in the flows. We then cluster the projections using a mixture of feature-weighted Gaussians over optical flow fields. The resulting model extracts a concise probabilistic description of the major classes of optical flow present. The method is demonstrated on a video of a person's facial expressions.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We present a method for unsupervised learning of classes of motions in video. We project optical flow fields to a complete, orthogonal, a-priori set of basis functions in a probabilistic fashion, which improves the estimation of the projections by incorporating uncertainties in the flows. We then cluster the projections using a mixture of feature-weighted Gaussians over optical flow fields. The resulting model extracts a concise probabilistic description of the major classes of optical flow present. The method is demonstrated on a video of a person's facial expressions.
光流场的贝叶斯聚类
提出了一种视频中运动类的无监督学习方法。我们以一种概率方式将光流场投影到一个完整的、正交的、先验的基函数集上,通过将流中的不确定性纳入其中,改进了投影的估计。然后,我们在光流场上使用特征加权高斯的混合聚类投影。所得模型对现有的主要类型的光流进行了简明的概率描述。该方法在一个人的面部表情视频中得到了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信