Многомодельная Оценка Инновационного Развития 78 Российских Регионов По Опережающим Индикаторам За Период 2005–2017гг. (Multimodel Estimation for Innovative Development of 78 Russian Regions Using Leading Indicators During 2005-2017)

V. Semenychev, Anastasiya Korobetskaya
{"title":"Многомодельная Оценка Инновационного Развития 78 Российских Регионов По Опережающим Индикаторам За Период 2005–2017гг. (Multimodel Estimation for Innovative Development of 78 Russian Regions Using Leading Indicators During 2005-2017)","authors":"V. Semenychev, Anastasiya Korobetskaya","doi":"10.2139/ssrn.3373579","DOIUrl":null,"url":null,"abstract":"<b>Russian Abstract:</b> Предложен комплекс опережающих индикаторов инновационной динамики России и их многокомпонентные оценки для 78 регионов за период 2005-2017 годов. Индикаторы характеризуют динамику основных отраслей российской экономики (строительства, торговли, добычи полезных ископаемых, обрабатывающей промышленности) трендами, циклическими, сезонными колебаниями и их взаимодействиями. Динамика продукции сельского хозяйства, в большей степени обусловленная климатическими и природными условиями, пока не рассматривались. Для трендов индикаторов предложены одна линейная и шесть существенно нелинейных (нелинейных по параметрам) моделей. Сезонная компонента моделировалась гармоникой с сезонными коэффициентами, а циклы Китчина, Жугляра и Кузнеца - суммой гармоник с некратными частотами (по Е.Е. Слуцкому). Взаимодействие компонент рассматривалось как линейное (аддитивной), так и нелинейное (аддитивно-мультипликативное). Скорректированный коэффициент детерминации обосновал более точные модели. Было уделено внимание расширению адаптации инструментария, прогнозированию всех регулярных компонент индикаторов, характеристикам инновационного развития и синхронности циклов отдельных регионов. Представлен новый и большей точности материал для руководителей, служб и предприятий регионов, определены дальнейшие перспективы развития предложенного инструментария.<br><br><b>English Abstract:</b> The authors proposed a set of leading indicators of innovation dynamics in Russia and their multicomponent estimates for 78 regions during 2005-2017. The indicators show dynamics of the most important economic sectors in Russia (building, trade, mining, manufacturing and its branches) while agricultural production, which dynamics mostly depends on climate and geography, have not yet been considered The models include trends, cycles, seasonal component and their interactions. For trends one linear and six substantially nonlinear (nonlinear in the parameters) models are used. The seasonal component was modeled by seasonal coefficients. Kitchin, Juglar and Kuznets cycles was modeled using sum of three sine curves with non-proportional frequencies (as suggested by E.Slutsky). The interaction of components was considered both linear (additive) and nonlinear (additive-multiplicative). The most accurate models were justified using adjusted coefficient of determination. Special attention is paid to adaptive modeling tools expansion, leading indicators decomposition and forecasting, innovative development analysis and regional cycles synchrony or asynchrony. As a result of the modeling the authors presented new and more accurate material for regional authorities and managers. Further development of the proposed modeling tools are also suggested.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3373579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Russian Abstract: Предложен комплекс опережающих индикаторов инновационной динамики России и их многокомпонентные оценки для 78 регионов за период 2005-2017 годов. Индикаторы характеризуют динамику основных отраслей российской экономики (строительства, торговли, добычи полезных ископаемых, обрабатывающей промышленности) трендами, циклическими, сезонными колебаниями и их взаимодействиями. Динамика продукции сельского хозяйства, в большей степени обусловленная климатическими и природными условиями, пока не рассматривались. Для трендов индикаторов предложены одна линейная и шесть существенно нелинейных (нелинейных по параметрам) моделей. Сезонная компонента моделировалась гармоникой с сезонными коэффициентами, а циклы Китчина, Жугляра и Кузнеца - суммой гармоник с некратными частотами (по Е.Е. Слуцкому). Взаимодействие компонент рассматривалось как линейное (аддитивной), так и нелинейное (аддитивно-мультипликативное). Скорректированный коэффициент детерминации обосновал более точные модели. Было уделено внимание расширению адаптации инструментария, прогнозированию всех регулярных компонент индикаторов, характеристикам инновационного развития и синхронности циклов отдельных регионов. Представлен новый и большей точности материал для руководителей, служб и предприятий регионов, определены дальнейшие перспективы развития предложенного инструментария.

English Abstract: The authors proposed a set of leading indicators of innovation dynamics in Russia and their multicomponent estimates for 78 regions during 2005-2017. The indicators show dynamics of the most important economic sectors in Russia (building, trade, mining, manufacturing and its branches) while agricultural production, which dynamics mostly depends on climate and geography, have not yet been considered The models include trends, cycles, seasonal component and their interactions. For trends one linear and six substantially nonlinear (nonlinear in the parameters) models are used. The seasonal component was modeled by seasonal coefficients. Kitchin, Juglar and Kuznets cycles was modeled using sum of three sine curves with non-proportional frequencies (as suggested by E.Slutsky). The interaction of components was considered both linear (additive) and nonlinear (additive-multiplicative). The most accurate models were justified using adjusted coefficient of determination. Special attention is paid to adaptive modeling tools expansion, leading indicators decomposition and forecasting, innovative development analysis and regional cycles synchrony or asynchrony. As a result of the modeling the authors presented new and more accurate material for regional authorities and managers. Further development of the proposed modeling tools are also suggested.
俄罗斯的Abstract:提供了一系列领先于俄罗斯创新动态的指标及其对2005-2017年78个地区的多元化评估。指标显示了俄罗斯经济(建设、贸易、采矿业、制造业)趋势、周期、季节性波动及其相互作用的动态。在很大程度上,由于气候和自然条件,农业产品的动态尚未得到考虑。对于趋势指标,提供了一种线性和六种主要非线性(参数非线性)模型。季节性成分是用季节性系数谐波模拟的,而kitchin、zhuglar和铁匠的周期是一个非频率谐波的总和。这种相互作用被认为是线性(附加值)和非线性(附加值)。修正的定义系数为更精确的模型提供了基础。人们注意到工具适应的扩大,预测指标的所有正则成分,创新发展特征和单个区域周期同步。该地区的高管、服务和企业提供了新的、更精确的材料,并确定了拟议工具的未来前景。英语Abstract:俄罗斯领先的动力学和2005-2017区间78区间的多项研究。俄罗斯最受欢迎的经济动态展览(建筑、贸易、矿业和矿业开发),没有动力趋势模型,圆盘,系列,和their互动。对于单行和六次substanealar来说,模特就是这样。季节性公司是季节性公司的模型。Kitchin、Juglar和Kuznets cycles都是三个未开发的特性的模型。components的互动是连接的boditive和nonlinear。最受欢迎的模特儿是《解剖学》中最受欢迎的模特儿。特别的刺激是扩展到adaptive模拟器,开创性的解构和力量,创新的分析和区域电路同步或同步。这是对新教练和新教练模式的回应。未来的模型工具开发是also suggested。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信