{"title":"ANOFS: Automated negotiation based online feature selection method","authors":"F. B. Said, A. Alimi","doi":"10.1109/ISDA.2015.7489229","DOIUrl":null,"url":null,"abstract":"Feature selection is an important technique in machine learning and pattern classification. Most existing studies of feature selection are using the batch learning methods. Such methods are not appropriate for real-world applications especially when data arrive sequentially. Recently, this problem is addressed by some feature selection techniques using online learning. Despite the advantages in efficiency of online feature selection methods, they are not always accurate enough when handling real world data. In this paper, we address this limitation by the integration of automated negotiation process. We present a novel method based on negotiation theory for online feature selection (ANOFS) and demonstrate its application to several public datasets.","PeriodicalId":196743,"journal":{"name":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2015.7489229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Feature selection is an important technique in machine learning and pattern classification. Most existing studies of feature selection are using the batch learning methods. Such methods are not appropriate for real-world applications especially when data arrive sequentially. Recently, this problem is addressed by some feature selection techniques using online learning. Despite the advantages in efficiency of online feature selection methods, they are not always accurate enough when handling real world data. In this paper, we address this limitation by the integration of automated negotiation process. We present a novel method based on negotiation theory for online feature selection (ANOFS) and demonstrate its application to several public datasets.