{"title":"Nonnegative contraction/averaging tensor factorization","authors":"M. Jankovic, B. Reljin","doi":"10.1109/NEUREL.2010.5644083","DOIUrl":null,"url":null,"abstract":"Nonnegative tensor factorization (NTF) is a recent multiway (multilinear) extension of negative matrix factorization (NMF), where nonnegativity constraints are mainly imposed on CANDECOMP/PARAFAC model and recently, also, on Tucker model. Nonnegative tensor factorization algorithms have many potential applications, including multiway clustering, multi-sensory or multidimensional data analysis and nonnegative neural sparse coding. In this paper we will present new approach to NTF which is based on CANDENCOMP/PARAFAC model. The proposed method is simple, computationally effective, easily extensible to higher dimensional tensors, can handle some problems related to rank-deficient tensors and can be used for analysis of the higher dimensional tensors than most of the known algorithms for NTF.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nonnegative tensor factorization (NTF) is a recent multiway (multilinear) extension of negative matrix factorization (NMF), where nonnegativity constraints are mainly imposed on CANDECOMP/PARAFAC model and recently, also, on Tucker model. Nonnegative tensor factorization algorithms have many potential applications, including multiway clustering, multi-sensory or multidimensional data analysis and nonnegative neural sparse coding. In this paper we will present new approach to NTF which is based on CANDENCOMP/PARAFAC model. The proposed method is simple, computationally effective, easily extensible to higher dimensional tensors, can handle some problems related to rank-deficient tensors and can be used for analysis of the higher dimensional tensors than most of the known algorithms for NTF.