Matrix Zoom: A Visual Interface to Semi-External Graphs

J. Abello, F. V. Ham
{"title":"Matrix Zoom: A Visual Interface to Semi-External Graphs","authors":"J. Abello, F. V. Ham","doi":"10.1109/INFVIS.2004.46","DOIUrl":null,"url":null,"abstract":"In Web data, telecommunications traffic and in epidemiological studies, dense subgraphs correspond to subsets of subjects (i.e. users, patients) that share a collection of attributes values (i.e. accessed Web pages, email-calling patterns or disease diagnostic profiles). Visual and computational identification of these \"clusters\" becomes useful when domain experts desire to determine those factors of major influence in the formation of access and communication clusters or in the detection and contention of disease spread. With the current increases in graphic hardware capabilities and RAM sizes, it is more useful to relate graph sizes to the available screen real estate S and the amount of available RAM M, instead of the number of edges or nodes in the graph. We offer a visual interface that is parameterized by M and S and is particularly suited for navigation tasks that require the identification of subgraphs whose edge density is above certain threshold. This is achieved by providing a zoomable matrix view of the underlying data. This view is strongly coupled to a hierarchical view of the essential information elements present in the data domain. We illustrate the applicability of this work to the visual navigation of cancer incidence data and to an aggregated sample of phone call traffic","PeriodicalId":109217,"journal":{"name":"IEEE Symposium on Information Visualization","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"137","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Information Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.2004.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 137

Abstract

In Web data, telecommunications traffic and in epidemiological studies, dense subgraphs correspond to subsets of subjects (i.e. users, patients) that share a collection of attributes values (i.e. accessed Web pages, email-calling patterns or disease diagnostic profiles). Visual and computational identification of these "clusters" becomes useful when domain experts desire to determine those factors of major influence in the formation of access and communication clusters or in the detection and contention of disease spread. With the current increases in graphic hardware capabilities and RAM sizes, it is more useful to relate graph sizes to the available screen real estate S and the amount of available RAM M, instead of the number of edges or nodes in the graph. We offer a visual interface that is parameterized by M and S and is particularly suited for navigation tasks that require the identification of subgraphs whose edge density is above certain threshold. This is achieved by providing a zoomable matrix view of the underlying data. This view is strongly coupled to a hierarchical view of the essential information elements present in the data domain. We illustrate the applicability of this work to the visual navigation of cancer incidence data and to an aggregated sample of phone call traffic
矩阵缩放:一个半外部图形的可视化界面
在Web数据、电信流量和流行病学研究中,密集子图对应于共享一组属性值(即访问的网页、电子邮件呼叫模式或疾病诊断概况)的主题子集(即用户、患者)。当领域专家希望确定在形成访问和通信集群或在检测和争论疾病传播方面具有重大影响的那些因素时,这些“集群”的视觉和计算识别变得有用。随着当前图形硬件功能和RAM大小的增加,将图形大小与可用屏幕空间S和可用RAM M的数量联系起来更有用,而不是将图中的边或节点数量联系起来。我们提供了一个由M和S参数化的可视化界面,特别适合于需要识别边缘密度高于一定阈值的子图的导航任务。这是通过提供底层数据的可缩放矩阵视图来实现的。该视图与数据域中存在的基本信息元素的分层视图紧密耦合。我们说明了这项工作对癌症发病率数据的视觉导航和电话流量汇总样本的适用性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信