Relevance feedback based on active learning and GMM in image retrieval system

Shuo Wang, Jianjian Wang
{"title":"Relevance feedback based on active learning and GMM in image retrieval system","authors":"Shuo Wang, Jianjian Wang","doi":"10.1109/ICMLC.2014.7009109","DOIUrl":null,"url":null,"abstract":"The image annotation and retrieval are significant for semantic image retrieval that needs to establish the relations between linguistic labels and images. So the probabilistic formulation for semantic labeling is introduced to solve them. In addition, relevance feedback can improve the retrieval performance efficiently in the content-based image retrieval (CBIR). In this paper, we proposed a new feedback approach with active learning method combined with Gaussian Mixture Model (GMM) which is used for the likelihood computation for the linguistic indexing.","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The image annotation and retrieval are significant for semantic image retrieval that needs to establish the relations between linguistic labels and images. So the probabilistic formulation for semantic labeling is introduced to solve them. In addition, relevance feedback can improve the retrieval performance efficiently in the content-based image retrieval (CBIR). In this paper, we proposed a new feedback approach with active learning method combined with Gaussian Mixture Model (GMM) which is used for the likelihood computation for the linguistic indexing.
图像检索系统中基于主动学习和GMM的相关反馈
图像标注与检索对于需要建立语言标签与图像之间关系的语义图像检索具有重要意义。因此,引入语义标注的概率公式来解决这些问题。此外,在基于内容的图像检索(CBIR)中,相关反馈可以有效地提高检索性能。本文提出了一种结合高斯混合模型(GMM)的主动学习反馈方法,用于语言标引的似然计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信