B. Xie, Hailong Jiao, Junbo Wang, Deyong Chen, Jian Chen
{"title":"An electrostatically-driven and capacitively-sensed differential lateral resonant pressure microsensor","authors":"B. Xie, Hailong Jiao, Junbo Wang, Deyong Chen, Jian Chen","doi":"10.1109/NEMS.2013.6559949","DOIUrl":null,"url":null,"abstract":"This paper presents an electrostatically-driven and capacitively-sensed resonant pressure micro sensor. The device was fabricated based on a SOI wafer requesting only 2 masks and simplified micro-fabrication steps including DRIE, sputter and wet etching. The sensor was quantified by an open loop system, producing a Q-factor higher than 10430 in vacuum (less than 0.5 Pa). The resonant frequency was shown to change linearly in response to applied pressure ranging from 50 kPa to 110 kPa. Experimental data analysis confirmed a sensitivity of 214 Hz/kPa with a linear correlativity of 0.99997.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents an electrostatically-driven and capacitively-sensed resonant pressure micro sensor. The device was fabricated based on a SOI wafer requesting only 2 masks and simplified micro-fabrication steps including DRIE, sputter and wet etching. The sensor was quantified by an open loop system, producing a Q-factor higher than 10430 in vacuum (less than 0.5 Pa). The resonant frequency was shown to change linearly in response to applied pressure ranging from 50 kPa to 110 kPa. Experimental data analysis confirmed a sensitivity of 214 Hz/kPa with a linear correlativity of 0.99997.