CSI-StripeFormer: Exploiting Stripe Features for CSI Compression in Massive MIMO System

Qingyong Hu, Hua Kang, Huangxun Chen, Qianyi Huang, Qian Zhang, Min Cheng
{"title":"CSI-StripeFormer: Exploiting Stripe Features for CSI Compression in Massive MIMO System","authors":"Qingyong Hu, Hua Kang, Huangxun Chen, Qianyi Huang, Qian Zhang, Min Cheng","doi":"10.1109/INFOCOM53939.2023.10229094","DOIUrl":null,"url":null,"abstract":"The massive MIMO gain for wireless communication has been greatly hindered by the feedback overhead of channel state information (CSI) growing linearly with the number of antennas. Recent efforts leverage the DNN-based encoder-decoder framework to exploit correlations within the CSI matrix for better CSI compression. However, existing works have not fully exploited the unique features of CSI, resulting in an unsatisfactory performance under high compression ratios and sensitivity to multipath effects. Instead of treating CSI as common 2D matrices like images, we reveal the intrinsic stripe-based correlation across the CSI matrix. Driven by this insight, we propose CSI-StripeFormer, a stripe-aware encoder-decoder framework to exploit the unique stripe feature for better CSI compression. We design a lightweight encoder with asymmetric convolution kernels to capture various shape features. We further incorporate novel designs tailored for stripe features, including a novel hierarchical Transformer backbone in the decoder and a hybrid attention mechanism to extract and fuse correlations in angular and delay domains. Our evaluation results show that our system achieves an over 7dB channel reconstruction gain under a high compression ratio of 64 in multipath-rich scenarios, significantly superior to current state-of-the-art approaches. This gain can be further improved to 17dB given the extended embedded dimension of our backbone.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM53939.2023.10229094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The massive MIMO gain for wireless communication has been greatly hindered by the feedback overhead of channel state information (CSI) growing linearly with the number of antennas. Recent efforts leverage the DNN-based encoder-decoder framework to exploit correlations within the CSI matrix for better CSI compression. However, existing works have not fully exploited the unique features of CSI, resulting in an unsatisfactory performance under high compression ratios and sensitivity to multipath effects. Instead of treating CSI as common 2D matrices like images, we reveal the intrinsic stripe-based correlation across the CSI matrix. Driven by this insight, we propose CSI-StripeFormer, a stripe-aware encoder-decoder framework to exploit the unique stripe feature for better CSI compression. We design a lightweight encoder with asymmetric convolution kernels to capture various shape features. We further incorporate novel designs tailored for stripe features, including a novel hierarchical Transformer backbone in the decoder and a hybrid attention mechanism to extract and fuse correlations in angular and delay domains. Our evaluation results show that our system achieves an over 7dB channel reconstruction gain under a high compression ratio of 64 in multipath-rich scenarios, significantly superior to current state-of-the-art approaches. This gain can be further improved to 17dB given the extended embedded dimension of our backbone.
CSI- stripeformer:利用条纹特征的CSI压缩在大规模MIMO系统
信道状态信息(CSI)的反馈开销随着天线数量的线性增长,极大地阻碍了无线通信中大规模MIMO增益的实现。最近的努力利用基于dnn的编码器-解码器框架来利用CSI矩阵内的相关性,以获得更好的CSI压缩。然而,现有的工作并没有充分利用CSI的独特之处,导致在高压缩比和对多径效应敏感的情况下,CSI的性能并不理想。与将CSI作为普通的二维矩阵(如图像)处理不同,我们揭示了CSI矩阵中基于条纹的内在相关性。基于这一见解,我们提出了CSI- stripeformer,这是一个条带感知的编码器-解码器框架,利用独特的条带特征来实现更好的CSI压缩。我们设计了一个具有非对称卷积核的轻量级编码器来捕获各种形状特征。我们进一步结合了为条纹特征量身定制的新设计,包括解码器中的新型分层变压器主干和混合注意机制,以提取和融合角域和延迟域的相关性。我们的评估结果表明,我们的系统在多路径丰富的场景下,在64的高压缩比下实现了超过7dB的信道重建增益,明显优于当前最先进的方法。考虑到骨干网的扩展嵌入尺寸,该增益可以进一步提高到17dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信