Image fusion using hierarchical PCA.

Ujwala Patil, Uma Mudengudi
{"title":"Image fusion using hierarchical PCA.","authors":"Ujwala Patil, Uma Mudengudi","doi":"10.1109/ICIIP.2011.6108966","DOIUrl":null,"url":null,"abstract":"In this paper we propose image fusion algorithm using hierarchical PCA. Image fusion is a process of combining two or more images (which are registered) of the same scene to get the more informative image. Hierarchical multiscale and multiresolution image processing techniques, pyramid decomposition are the basis for the majority of image fusion algorithms. Principal component analysis (PCA) is a well-known scheme for feature extraction and dimension reduction and is used for image fusion. We propose image fusion algorithm by combining pyramid and PCA techniques and carryout the quality analysis of proposed fusion algorithm without reference image. There is an increasing need for the quality analysis of the fusion algorithms as fusion algorithms are data set dependent. Subjective analysis of fusion algorithm using hierarchical PCA is done by considering the opinion of experts and non experts and for quantitative quality analysis we use different quality metrics. We demonstrate fusion using pyramid, wavelet and PCA fusion techniques and carry out performance analysis for these four fusion methods using different quality measures for variety of data sets and show that proposed image fusion using hierarchical PCA is better for the fusion of multimodal imaged. Visible inspection with quality parameters are used to arrive at a fusion results.","PeriodicalId":201779,"journal":{"name":"2011 International Conference on Image Information Processing","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Image Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIP.2011.6108966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

Abstract

In this paper we propose image fusion algorithm using hierarchical PCA. Image fusion is a process of combining two or more images (which are registered) of the same scene to get the more informative image. Hierarchical multiscale and multiresolution image processing techniques, pyramid decomposition are the basis for the majority of image fusion algorithms. Principal component analysis (PCA) is a well-known scheme for feature extraction and dimension reduction and is used for image fusion. We propose image fusion algorithm by combining pyramid and PCA techniques and carryout the quality analysis of proposed fusion algorithm without reference image. There is an increasing need for the quality analysis of the fusion algorithms as fusion algorithms are data set dependent. Subjective analysis of fusion algorithm using hierarchical PCA is done by considering the opinion of experts and non experts and for quantitative quality analysis we use different quality metrics. We demonstrate fusion using pyramid, wavelet and PCA fusion techniques and carry out performance analysis for these four fusion methods using different quality measures for variety of data sets and show that proposed image fusion using hierarchical PCA is better for the fusion of multimodal imaged. Visible inspection with quality parameters are used to arrive at a fusion results.
基于层次PCA的图像融合。
本文提出了一种基于层次PCA的图像融合算法。图像融合是将同一场景的两幅或多幅图像(经过配准的)结合在一起,得到信息量更大的图像的过程。分层多尺度和多分辨率图像处理技术、金字塔分解是大多数图像融合算法的基础。主成分分析(PCA)是一种众所周知的特征提取和降维方案,用于图像融合。本文提出了结合金字塔和PCA技术的图像融合算法,并在没有参考图像的情况下对所提出的融合算法进行了质量分析。由于融合算法依赖于数据集,因此越来越需要对融合算法进行质量分析。采用层次主成分分析法对融合算法进行主观分析,考虑专家和非专家的意见,采用不同的质量指标进行定量质量分析。我们演示了金字塔、小波和PCA融合技术的融合,并对这四种融合方法在不同数据集上使用不同的质量度量进行了性能分析,结果表明,采用分层PCA的图像融合更适合多模态图像的融合。采用带质量参数的目视检测来获得融合结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信