Optimizing Energy Operation and Planning using Ring Cellular Encode-Decode Univariate Marginal Distribution Algorithm

Ansel Y. Rodríguez González, Angel Díaz Pacheco, Ramón Aranda, Miguel Álvarez Carmona, Yoan Martínez López, Julio Madera
{"title":"Optimizing Energy Operation and Planning using Ring Cellular Encode-Decode Univariate Marginal Distribution Algorithm","authors":"Ansel Y. Rodríguez González, Angel Díaz Pacheco, Ramón Aranda, Miguel Álvarez Carmona, Yoan Martínez López, Julio Madera","doi":"10.1145/3583133.3596422","DOIUrl":null,"url":null,"abstract":"Efficient energy management is critical to building inclusive, safe, resilient, and sustainable cities and human settlements. Optimizing the operation and planning of smart grids is crucial in this regard and remains an active research area. The \"Competition on Evolutionary Computation in the Energy Domain\" has been held annually since 2017. Its 2023 edition focuses on two problems: Risk-based optimization of energy resource management considering the uncertainty of high penetration of distributed energy resources, and Long-term transmission network expansion planning. In this paper, we apply the RCED-UMDA algorithm to solve these problems, and our experimental results demonstrate its superiority over the top three algorithms of the 2022 and 2021 competition editions.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient energy management is critical to building inclusive, safe, resilient, and sustainable cities and human settlements. Optimizing the operation and planning of smart grids is crucial in this regard and remains an active research area. The "Competition on Evolutionary Computation in the Energy Domain" has been held annually since 2017. Its 2023 edition focuses on two problems: Risk-based optimization of energy resource management considering the uncertainty of high penetration of distributed energy resources, and Long-term transmission network expansion planning. In this paper, we apply the RCED-UMDA algorithm to solve these problems, and our experimental results demonstrate its superiority over the top three algorithms of the 2022 and 2021 competition editions.
利用环蜂窝编解码单变量边际分布算法优化能源运行与规划
高效的能源管理对于建设包容、安全、有韧性和可持续的城市和人类住区至关重要。优化智能电网的运行和规划在这方面是至关重要的,也是一个活跃的研究领域。自2017年以来,“能源领域进化计算竞赛”每年举办一次。其2023年版主要关注两个问题:考虑分布式能源高渗透率的不确定性,基于风险的能源管理优化,以及长期输电网扩容规划。在本文中,我们应用RCED-UMDA算法来解决这些问题,我们的实验结果表明,它比2022年和2021年竞赛版本的前三名算法有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信