Intuitive Clustering of Biological Data

B. Hammer, A. Hasenfuss, Frank-Michael Schleif, T. Villmann, M. Strickert, U. Seiffert
{"title":"Intuitive Clustering of Biological Data","authors":"B. Hammer, A. Hasenfuss, Frank-Michael Schleif, T. Villmann, M. Strickert, U. Seiffert","doi":"10.1109/IJCNN.2007.4371244","DOIUrl":null,"url":null,"abstract":"K-means clustering combines a variety of striking properties because of which it is widely used in applications: training is intuitive and simple, the final classifier represents classes by geometrically meaningful prototypes, and the algorithm is quite powerful compared to more complex alternative clustering algorithms. In this contribution, we focus on extensions which incorporate additional information into the clustering algorithm to achieve a better accuracy: neighborhood cooperation from neural gas, (possibly fuzzy) label information of input data, and general problem-adapted distances instead of the standard Euclidean metric. These extensions can be formulated in a simple general framework by means of a cost function. We demonstrate the ability of these variants on several representative clustering problems from computational biology.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

K-means clustering combines a variety of striking properties because of which it is widely used in applications: training is intuitive and simple, the final classifier represents classes by geometrically meaningful prototypes, and the algorithm is quite powerful compared to more complex alternative clustering algorithms. In this contribution, we focus on extensions which incorporate additional information into the clustering algorithm to achieve a better accuracy: neighborhood cooperation from neural gas, (possibly fuzzy) label information of input data, and general problem-adapted distances instead of the standard Euclidean metric. These extensions can be formulated in a simple general framework by means of a cost function. We demonstrate the ability of these variants on several representative clustering problems from computational biology.
生物数据的直观聚类
K-means聚类结合了多种引人注目的特性,因此在应用中得到了广泛的应用:训练直观而简单,最终分类器通过几何上有意义的原型来表示类,与更复杂的替代聚类算法相比,该算法相当强大。在这篇文章中,我们将重点放在将附加信息纳入聚类算法以获得更好精度的扩展:来自神经气体的邻域合作,输入数据的(可能模糊的)标签信息,以及一般问题适应距离而不是标准欧几里得度量。这些扩展可以通过成本函数在一个简单的一般框架中表示出来。我们在计算生物学的几个代表性聚类问题上展示了这些变体的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信