On the Impact of Emotions on the Detection of False Information

Paolo Rosso, Bilal Ghanem, Anastasia Giahanou
{"title":"On the Impact of Emotions on the Detection of False Information","authors":"Paolo Rosso, Bilal Ghanem, Anastasia Giahanou","doi":"10.1145/3459104.3459150","DOIUrl":null,"url":null,"abstract":"A great amount of fake news are propagated in online social media, with the aim, usually, to deceive users and formulate specific opinions. The threat is even greater when the purpose is political or ideological and they are used during electoral campaigns. Bots play a key role in disseminating these false claims. False information is intentionally written to trigger emotions to the readers in an attempt to be believed and be disseminated in social media. Therefore, in order to discriminate credible from non credible information, we believe that it is important to take into account these emotional signals. In this paper we describe the way that emotional features have been integrated in deep learning models in order to detect if and when emotions are evoked in fake news.","PeriodicalId":142284,"journal":{"name":"2021 International Symposium on Electrical, Electronics and Information Engineering","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Electrical, Electronics and Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459104.3459150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A great amount of fake news are propagated in online social media, with the aim, usually, to deceive users and formulate specific opinions. The threat is even greater when the purpose is political or ideological and they are used during electoral campaigns. Bots play a key role in disseminating these false claims. False information is intentionally written to trigger emotions to the readers in an attempt to be believed and be disseminated in social media. Therefore, in order to discriminate credible from non credible information, we believe that it is important to take into account these emotional signals. In this paper we describe the way that emotional features have been integrated in deep learning models in order to detect if and when emotions are evoked in fake news.
论情绪对虚假信息检测的影响
大量的假新闻在网络社交媒体上传播,其目的通常是欺骗用户并形成特定的意见。如果目的是政治或意识形态,并在竞选活动中使用,威胁就更大了。机器人在传播这些虚假言论方面发挥了关键作用。虚假信息是故意编写的,以引发读者的情绪,试图被相信并在社交媒体上传播。因此,为了区分可信和不可信的信息,我们认为考虑这些情感信号是很重要的。在本文中,我们描述了将情感特征集成到深度学习模型中的方式,以检测假新闻中是否以及何时会引发情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信