Machine Learning-Based Periodic Setup Changes for Semiconductor Manufacturing Machines

Je-Hun Lee, Hyun-Jung Kim, Young Kim, Y. Kim, Byung-Hee Kim, Gu-Hwan Chung
{"title":"Machine Learning-Based Periodic Setup Changes for Semiconductor Manufacturing Machines","authors":"Je-Hun Lee, Hyun-Jung Kim, Young Kim, Y. Kim, Byung-Hee Kim, Gu-Hwan Chung","doi":"10.1109/WSC52266.2021.9715383","DOIUrl":null,"url":null,"abstract":"Semiconductor manufacturing machines, especially for photo-lithography processes, require large setup times when changing job types. Hence, setup operations do not often occur unless there is no job to be processed. In practice, a simulation-based method that predicts the incoming WIP is often used to determine whether changing machine setup states or not. The simulation-based method can provide useful information on the future production environment with a high accuracy but takes a long time, which can delay the setup change decisions. Therefore, this work proposes a machine learning-based approach that determines setup states of the machines. The proposed method shows better performance than several heuristic rules in terms of movement.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Semiconductor manufacturing machines, especially for photo-lithography processes, require large setup times when changing job types. Hence, setup operations do not often occur unless there is no job to be processed. In practice, a simulation-based method that predicts the incoming WIP is often used to determine whether changing machine setup states or not. The simulation-based method can provide useful information on the future production environment with a high accuracy but takes a long time, which can delay the setup change decisions. Therefore, this work proposes a machine learning-based approach that determines setup states of the machines. The proposed method shows better performance than several heuristic rules in terms of movement.
基于机器学习的半导体制造机器的周期性设置更改
半导体制造机器,特别是光刻工艺,在改变工作类型时需要大量的设置时间。因此,除非没有作业要处理,否则设置操作通常不会发生。在实践中,一种基于模拟的方法来预测传入的在制品,通常用于确定是否改变机器设置状态。基于仿真的方法可以提供有关未来生产环境的有用信息,精度高,但耗时长,可能会延迟设置更改决策。因此,这项工作提出了一种基于机器学习的方法来确定机器的设置状态。在运动方面,该方法比几种启发式规则具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信