HCA Operator: A Hybrid Cloud Auto-scaling Tooling for Microservice Workloads

Yuyang Wang, Fan Zhang, S. Khan
{"title":"HCA Operator: A Hybrid Cloud Auto-scaling Tooling for Microservice Workloads","authors":"Yuyang Wang, Fan Zhang, S. Khan","doi":"10.1109/MSN57253.2022.00143","DOIUrl":null,"url":null,"abstract":"Elastic cloud platform, e.g. Kubernetes, enables dy-namically scale in or out computing resources in accordance with the workloads fluctuation. As the cloud evolves to hybrid, where public and private clouds co-exist as the underline substrate, autoscaling applications within a hybrid cloud is no longer straightforward. The difficulty lies in all aspects, e.g. global load balancing, hybrid-cloud monitoring and alerting, storage sharing and replication, security and privacy, etc. However, it will significantly pay off if hybrid-cloud autoscaling is supported and boundless computing resources can be utilized per request. In this paper, we design Hybrid Cloud Autoscaler Operator (HCA Operator), a customized Kubernetes Controller that leverages the Kubernetes Custom Resource to auto-scale microservice applications across hybrid clouds. HCA Operator load balances across hybrid clouds, monitors metrics, and autoscales to des-tination clusters that exist in other clouds. We discuss the implementation details and perform experiments in a hybrid cloud environment. The experimental results demonstrate that if the workload changes quickly, our Operator can properly auto-scale the microservice applications across hybrid cloud in order to meet the Service Level Agreement (SLA) requirements.","PeriodicalId":114459,"journal":{"name":"2022 18th International Conference on Mobility, Sensing and Networking (MSN)","volume":"41 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th International Conference on Mobility, Sensing and Networking (MSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSN57253.2022.00143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Elastic cloud platform, e.g. Kubernetes, enables dy-namically scale in or out computing resources in accordance with the workloads fluctuation. As the cloud evolves to hybrid, where public and private clouds co-exist as the underline substrate, autoscaling applications within a hybrid cloud is no longer straightforward. The difficulty lies in all aspects, e.g. global load balancing, hybrid-cloud monitoring and alerting, storage sharing and replication, security and privacy, etc. However, it will significantly pay off if hybrid-cloud autoscaling is supported and boundless computing resources can be utilized per request. In this paper, we design Hybrid Cloud Autoscaler Operator (HCA Operator), a customized Kubernetes Controller that leverages the Kubernetes Custom Resource to auto-scale microservice applications across hybrid clouds. HCA Operator load balances across hybrid clouds, monitors metrics, and autoscales to des-tination clusters that exist in other clouds. We discuss the implementation details and perform experiments in a hybrid cloud environment. The experimental results demonstrate that if the workload changes quickly, our Operator can properly auto-scale the microservice applications across hybrid cloud in order to meet the Service Level Agreement (SLA) requirements.
HCA操作员:用于微服务工作负载的混合云自动扩展工具
弹性云平台,如Kubernetes,可以根据工作负载的波动动态伸缩计算资源。随着云向混合云发展,公共云和私有云作为底层共存,混合云中的自动伸缩应用程序不再简单。难点在于全局负载均衡、混合云监控与预警、存储共享与复制、安全与隐私等各个方面。但是,如果支持混合云自动伸缩,并且每个请求都可以利用无限的计算资源,那么它将获得显著的回报。在本文中,我们设计了混合云自动缩放操作符(HCA Operator),这是一个定制的Kubernetes控制器,它利用Kubernetes自定义资源在混合云上自动缩放微服务应用程序。HCA Operator跨混合云进行负载平衡,监控指标,并自动扩展到存在于其他云中的目的地集群。我们讨论了实现细节,并在混合云环境中进行了实验。实验结果表明,在工作负载快速变化的情况下,我们的运营商可以在混合云上适当地自动扩展微服务应用程序,以满足服务水平协议(SLA)的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信