Multivariate spectral reconstruction of STAP covariance matrices: Hermitian “relaxation” and performance analysis

Y. Abramovich, B.A. Johnson, N. Spencer
{"title":"Multivariate spectral reconstruction of STAP covariance matrices: Hermitian “relaxation” and performance analysis","authors":"Y. Abramovich, B.A. Johnson, N. Spencer","doi":"10.1109/SAM.2008.4606912","DOIUrl":null,"url":null,"abstract":"In space-time adaptive processing (STAP) applications, temporally stationary clutter results in a Toeplitz-block clutter co- variance matrix. In the reduced-order parametric matched filter STAP technique, this covariance matrix is reconstructed from a small number of estimated parameters, resulting in a much more efficient use of training samples. This paper explores a computationally advantageous \"relaxed\" maximum entropy (Burg) reconstruction technique which does not restore a strict Toeplitz-block structure, but does preserve the Burg spectrum. Performance of the reconstructed covariance matrix model as a STAP filter is evaluated using the DARPA KASSPER dataset and compared with \"proper\" Toeplitz-block reconstruction.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In space-time adaptive processing (STAP) applications, temporally stationary clutter results in a Toeplitz-block clutter co- variance matrix. In the reduced-order parametric matched filter STAP technique, this covariance matrix is reconstructed from a small number of estimated parameters, resulting in a much more efficient use of training samples. This paper explores a computationally advantageous "relaxed" maximum entropy (Burg) reconstruction technique which does not restore a strict Toeplitz-block structure, but does preserve the Burg spectrum. Performance of the reconstructed covariance matrix model as a STAP filter is evaluated using the DARPA KASSPER dataset and compared with "proper" Toeplitz-block reconstruction.
STAP协方差矩阵的多元谱重构:厄米“松弛”与性能分析
在时空自适应处理(STAP)应用中,时间平稳杂波产生Toeplitz-block杂波协方差矩阵。在降阶参数匹配滤波器STAP技术中,该协方差矩阵由少量估计参数重构,从而更有效地利用训练样本。本文探索了一种计算上有利的“松弛”最大熵(Burg)重建技术,该技术不恢复严格的toeplitz块结构,但保留了Burg谱。利用DARPA KASSPER数据集评估了重建协方差矩阵模型作为STAP滤波器的性能,并与“适当的”toeplitz块重建进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信