Stochastic optimization of control parameters in genetic algorithms

Q.H. Wu, Y.J. Cao
{"title":"Stochastic optimization of control parameters in genetic algorithms","authors":"Q.H. Wu, Y.J. Cao","doi":"10.1109/ICEC.1997.592272","DOIUrl":null,"url":null,"abstract":"The genetic search can be modeled as a controlled Markovian process, the transition of which depends on control parameters (probabilities of crossover and mutation). This paper proposes a stochastic gradient and develops a stochastic approximation algorithm to optimize control parameters of genetic algorithms (GAs). The optimal values of control parameters can be found from a recursive estimation of control parameters provided by the stochastic approximation algorithm. The algorithm performs in finding a stochastic gradient of a given performance index and adapting the control parameters in the direction of descent. Numerical results based on the classical multimodal functions are given to show the effectiveness of the proposed algorithm.","PeriodicalId":167852,"journal":{"name":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1997.592272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The genetic search can be modeled as a controlled Markovian process, the transition of which depends on control parameters (probabilities of crossover and mutation). This paper proposes a stochastic gradient and develops a stochastic approximation algorithm to optimize control parameters of genetic algorithms (GAs). The optimal values of control parameters can be found from a recursive estimation of control parameters provided by the stochastic approximation algorithm. The algorithm performs in finding a stochastic gradient of a given performance index and adapting the control parameters in the direction of descent. Numerical results based on the classical multimodal functions are given to show the effectiveness of the proposed algorithm.
遗传算法中控制参数的随机优化
遗传搜索可以建模为受控的马尔可夫过程,该过程的过渡取决于控制参数(交叉和突变的概率)。本文提出了一种随机梯度算法,并提出了一种随机逼近算法来优化遗传算法的控制参数。控制参数的最优值可以由随机逼近算法提供的控制参数递归估计得到。该算法的工作原理是寻找给定性能指标的随机梯度,并在下降方向上自适应控制参数。基于经典多模态函数的数值结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信