{"title":"Application issues of a programmable optical CNN implementation","authors":"L. Orzó, S.T. Kes, T. Roska","doi":"10.1109/CNNA.2002.1035048","DOIUrl":null,"url":null,"abstract":"A programmable opto-electronic analogic CNN computer (POAC) provides an efficient frame for diverse image processing applications, as it combines the enormous inherent computational capabilities of our new, massively parallel, but flexibly programmable optical CNN implementation with the capabilities of a visual CNN-UM chip. Our optical CNN implementation is based on an original, semi-incoherent optical correlator architecture, which is superior to other optical implementations in several respects. It makes real time reprogramming of a new type of joint Fourier transform correlator (t/sub 2/-JTC) possible while preserving the inherent speed of VanderLugt type of systems. Furthermore the POAC architecture overcomes the main limitations of both the microelectronic (VLSI) and other optical implementations. In this paper it will be shown that this device is particularly useful in image-processing algorithms, which cannot be fulfilled real time by any other existing optical or digital system due to the high number of pattern matching tasks required.","PeriodicalId":387716,"journal":{"name":"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2002.1035048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A programmable opto-electronic analogic CNN computer (POAC) provides an efficient frame for diverse image processing applications, as it combines the enormous inherent computational capabilities of our new, massively parallel, but flexibly programmable optical CNN implementation with the capabilities of a visual CNN-UM chip. Our optical CNN implementation is based on an original, semi-incoherent optical correlator architecture, which is superior to other optical implementations in several respects. It makes real time reprogramming of a new type of joint Fourier transform correlator (t/sub 2/-JTC) possible while preserving the inherent speed of VanderLugt type of systems. Furthermore the POAC architecture overcomes the main limitations of both the microelectronic (VLSI) and other optical implementations. In this paper it will be shown that this device is particularly useful in image-processing algorithms, which cannot be fulfilled real time by any other existing optical or digital system due to the high number of pattern matching tasks required.