{"title":"Genetic algorithms for solving shortest path problems","authors":"Mitsuo Gen, R. Cheng, Dingwei Wang","doi":"10.1109/ICEC.1997.592343","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the possibility of using genetic algorithms to solve shortest path problems. The most thorny and critical task for developing a genetic algorithm to this problem is how to encode a path in a graph into a chromosome. A priority-based encoding method is proposed which can potentially represent all possible paths in a graph. Because a variety of network optimization problems may be solved, either exactly or approximately, by identifying shortest path, this studies will provide a base for constructing efficient solution procedures for shortest path-based network optimization problems. The proposed approach has been tested on three randomly generated problems with different size from 6 nodes to 70 nodes and from 10 edges to 211 edges. The experiment results are very encouraging: it can find the known optimum very rapidly with very high probability. It can be believed that genetic algorithms may hopefully be a new approach for such kinds of difficult-to-solve problems.","PeriodicalId":167852,"journal":{"name":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"177","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1997.592343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 177
Abstract
In this study, we investigated the possibility of using genetic algorithms to solve shortest path problems. The most thorny and critical task for developing a genetic algorithm to this problem is how to encode a path in a graph into a chromosome. A priority-based encoding method is proposed which can potentially represent all possible paths in a graph. Because a variety of network optimization problems may be solved, either exactly or approximately, by identifying shortest path, this studies will provide a base for constructing efficient solution procedures for shortest path-based network optimization problems. The proposed approach has been tested on three randomly generated problems with different size from 6 nodes to 70 nodes and from 10 edges to 211 edges. The experiment results are very encouraging: it can find the known optimum very rapidly with very high probability. It can be believed that genetic algorithms may hopefully be a new approach for such kinds of difficult-to-solve problems.