GlimpseData: towards continuous vision-based personal analytics

Seungyeop Han, R. Nandakumar, Matthai Philipose, A. Krishnamurthy, D. Wetherall
{"title":"GlimpseData: towards continuous vision-based personal analytics","authors":"Seungyeop Han, R. Nandakumar, Matthai Philipose, A. Krishnamurthy, D. Wetherall","doi":"10.1145/2611264.2611269","DOIUrl":null,"url":null,"abstract":"Emerging wearable devices provide a new opportunity for mobile context-aware applications to use continuous audio/video sensing data as primitive inputs. Due to the high-datarate and compute-intensive nature of the inputs, it is important to design frameworks and applications to be efficient. We present the GlimpseData framework to collect and analyze data for studying continuous high-datarate mobile perception. As a case study, we show that we can use low-powered sensors as a filter to avoid sensing and processing video for face detection. Our relatively simple mechanism avoids processing roughly 60% of video frames while missing only 10% of frames with faces in them.","PeriodicalId":131326,"journal":{"name":"Proceedings of the 2014 workshop on physical analytics","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 workshop on physical analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2611264.2611269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Emerging wearable devices provide a new opportunity for mobile context-aware applications to use continuous audio/video sensing data as primitive inputs. Due to the high-datarate and compute-intensive nature of the inputs, it is important to design frameworks and applications to be efficient. We present the GlimpseData framework to collect and analyze data for studying continuous high-datarate mobile perception. As a case study, we show that we can use low-powered sensors as a filter to avoid sensing and processing video for face detection. Our relatively simple mechanism avoids processing roughly 60% of video frames while missing only 10% of frames with faces in them.
GlimpseData:面向基于视觉的持续个人分析
新兴的可穿戴设备为移动环境感知应用提供了一个新的机会,可以使用连续的音频/视频传感数据作为原始输入。由于输入的高数据量和计算密集型性质,设计框架和应用程序以提高效率非常重要。我们提出了GlimpseData框架来收集和分析数据,以研究连续的高数据率移动感知。作为一个案例研究,我们表明我们可以使用低功率传感器作为滤波器,以避免在人脸检测中感知和处理视频。我们相对简单的机制可以避免处理大约60%的视频帧,同时只丢失10%的有人脸的帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信