Maximum likelihood estimation in the generalized extreme value regression model for binary data

Lo Fatimata, Demba Ba, Diop Aba
{"title":"Maximum likelihood estimation in the generalized extreme value regression model for binary data","authors":"Lo Fatimata, Demba Ba, Diop Aba","doi":"10.56947/gjom.v12i2.733","DOIUrl":null,"url":null,"abstract":"Generalized extreme value regression model is widely used when the dependent variable Y represents a rare event. The quantile function of the GEV distribution is used as link function to investigate the relationship between the binary outcome Y and a set of potential predictors X. In this article we develop a maximum likelihood estimation procedure int he generalized extreme value regression model. We establish the asymptotic properties (existence, consistency and asymptotic normality) of the proposed maximum likelihood estimator.","PeriodicalId":421614,"journal":{"name":"Gulf Journal of Mathematics","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gulf Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/gjom.v12i2.733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Generalized extreme value regression model is widely used when the dependent variable Y represents a rare event. The quantile function of the GEV distribution is used as link function to investigate the relationship between the binary outcome Y and a set of potential predictors X. In this article we develop a maximum likelihood estimation procedure int he generalized extreme value regression model. We establish the asymptotic properties (existence, consistency and asymptotic normality) of the proposed maximum likelihood estimator.
二值数据广义极值回归模型中的极大似然估计
广义极值回归模型在因变量Y代表罕见事件时被广泛使用。利用GEV分布的分位数函数作为链接函数,研究了二元结果Y与一组潜在预测因子x之间的关系。本文提出了广义极值回归模型的极大似然估计方法。我们建立了所提出的极大似然估计的渐近性质(存在性、相合性和渐近正态性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信