Towards the Automatic Learning of Ontologies

Isidra Ocampo-Guzman, I. Lopez-Arevalo, E. Tello-Leal, V. Sosa-Sosa
{"title":"Towards the Automatic Learning of Ontologies","authors":"Isidra Ocampo-Guzman, I. Lopez-Arevalo, E. Tello-Leal, V. Sosa-Sosa","doi":"10.1109/STIL.2009.23","DOIUrl":null,"url":null,"abstract":"This paper proposes a methodology for the automatic learning of ontologies from a text corpus. The concepts (topics) from documents into the corpus are identified by using the Latent Dirichlet Allocation model. Based on theset of identified topics, for each concept it is constructed its taxonomy by using the terms with greater probability which contribute to define it. WordNet is usedin the construction of these partial topic taxonomies by obtaining the similarity and relatedness between the terms that constitute each topic. The resulting taxonomies are joined to structure the final ontology. The methodology is evaluated with the Lonely Planet corpus.","PeriodicalId":265848,"journal":{"name":"2009 Seventh Brazilian Symposium in Information and Human Language Technology","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh Brazilian Symposium in Information and Human Language Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STIL.2009.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a methodology for the automatic learning of ontologies from a text corpus. The concepts (topics) from documents into the corpus are identified by using the Latent Dirichlet Allocation model. Based on theset of identified topics, for each concept it is constructed its taxonomy by using the terms with greater probability which contribute to define it. WordNet is usedin the construction of these partial topic taxonomies by obtaining the similarity and relatedness between the terms that constitute each topic. The resulting taxonomies are joined to structure the final ontology. The methodology is evaluated with the Lonely Planet corpus.
面向本体的自动学习
本文提出了一种从文本语料库中自动学习本体的方法。从文档到语料库的概念(主题)通过使用潜狄利克雷分配模型进行识别。基于这些确定的主题集,对于每个概念,它通过使用具有较大概率的有助于定义该概念的术语来构建其分类。WordNet通过获取构成每个主题的术语之间的相似性和相关性来构建这些部分主题分类法。生成的分类法被连接起来,以构建最终的本体。该方法是用Lonely Planet语料库进行评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信