Reconstructing Missing Areas in Facial Images

Christoph Jansen, Radek Mackowiak, N. Hezel, Moritz Ufer, Gregor Altstadt, K. U. Barthel
{"title":"Reconstructing Missing Areas in Facial Images","authors":"Christoph Jansen, Radek Mackowiak, N. Hezel, Moritz Ufer, Gregor Altstadt, K. U. Barthel","doi":"10.1109/ISM.2015.68","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach to reconstruct missing areas in facial images by using a series of Restricted Boltzman Machines (RBMs). RBMs created with a low number of hidden neurons generalize well and are able to reconstruct basic structures in the missing areas. On the other hand networks with many hidden neurons tend to emphasize details, when using the reconstruction of the previous, more generalized RBMs, as their input. Since trained RBMs are fast in encoding and decoding data by design, our method is also suitable for processing video streams.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a novel approach to reconstruct missing areas in facial images by using a series of Restricted Boltzman Machines (RBMs). RBMs created with a low number of hidden neurons generalize well and are able to reconstruct basic structures in the missing areas. On the other hand networks with many hidden neurons tend to emphasize details, when using the reconstruction of the previous, more generalized RBMs, as their input. Since trained RBMs are fast in encoding and decoding data by design, our method is also suitable for processing video streams.
人脸图像缺失区域的重建
本文提出了一种利用一系列受限玻尔兹曼机(rbm)重建人脸图像缺失区域的新方法。隐藏神经元数量少的rbm泛化效果好,能够重建缺失区域的基本结构。另一方面,当使用先前更广义的rbm的重建作为输入时,具有许多隐藏神经元的网络倾向于强调细节。由于经过训练的rbm在编码和解码数据的设计上是快速的,因此我们的方法也适用于视频流的处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信