Indoor Occupant Positioning System Using Active RFID Deployment and Particle Filters

Kevin Weekly, Han Zou, Lihua Xie, Q. Jia, A. Bayen
{"title":"Indoor Occupant Positioning System Using Active RFID Deployment and Particle Filters","authors":"Kevin Weekly, Han Zou, Lihua Xie, Q. Jia, A. Bayen","doi":"10.1109/DCOSS.2014.53","DOIUrl":null,"url":null,"abstract":"This article describes a method for indoor positioning of human-carried active Radio Frequency Identification (RFID) tags based on the Sampling Importance Resampling (SIR) particle filtering algorithm. To use particle filtering methods, it is necessary to furnish statistical state transition and observation distributions. The state transition distribution is obstacle-aware and sampled from a precomputed accessibility map. The observation distribution is empirically determined by ground truth RSS measurements while moving the RFID tags along a known trajectory. From this data, we generate estimates of the sensor measurement distributions, grouped by distance, between the tag and sensor. A grid of 24 sensors is deployed in an office environment, measuring Received Signal Strength (RSS) from the tags, and a multithreaded program is written to implement the method. We discuss the accuracy of the method using a verification data set collected during a field-operational test.","PeriodicalId":351707,"journal":{"name":"2014 IEEE International Conference on Distributed Computing in Sensor Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Distributed Computing in Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS.2014.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

This article describes a method for indoor positioning of human-carried active Radio Frequency Identification (RFID) tags based on the Sampling Importance Resampling (SIR) particle filtering algorithm. To use particle filtering methods, it is necessary to furnish statistical state transition and observation distributions. The state transition distribution is obstacle-aware and sampled from a precomputed accessibility map. The observation distribution is empirically determined by ground truth RSS measurements while moving the RFID tags along a known trajectory. From this data, we generate estimates of the sensor measurement distributions, grouped by distance, between the tag and sensor. A grid of 24 sensors is deployed in an office environment, measuring Received Signal Strength (RSS) from the tags, and a multithreaded program is written to implement the method. We discuss the accuracy of the method using a verification data set collected during a field-operational test.
采用有源RFID部署和粒子过滤器的室内乘员定位系统
本文介绍了一种基于采样重要性重采样(SIR)粒子滤波算法的人携带有源射频识别(RFID)标签室内定位方法。要使用粒子滤波方法,必须提供统计状态转移和观测分布。状态转换分布是障碍物感知的,并从预先计算的可达性映射中采样。观察分布是经验地确定的地面真相RSS测量,同时移动RFID标签沿着已知的轨迹。从这些数据中,我们生成传感器测量分布的估计,按距离分组,在标签和传感器之间。在办公环境中部署了一个由24个传感器组成的网格,测量来自标签的接收信号强度(RSS),并编写了一个多线程程序来实现该方法。我们使用在现场操作测试中收集的验证数据集来讨论该方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信