Global stability of the SEIR epidemic model with infectivityin both latent period and infected period

Yu Zhang, Zefeng Ren
{"title":"Global stability of the SEIR epidemic model with infectivityin both latent period and infected period","authors":"Yu Zhang, Zefeng Ren","doi":"10.1109/ISB.2013.6623790","DOIUrl":null,"url":null,"abstract":"An epidemic model with infectivity and recovery in both latent and infected period is introduced. Utilizing the LaSalle invariance principle and Bendixson criterion,the basic reproduction number is found, we prove that the disease-free equilibrium is globally asymptotically stable when the basic reproduction number is less than one. The disease-free equilibrium is unstable and the unique positive equilibrium is globally asymptotically stable when the basic reproduction number is greater than one. Numerical simulations support our conclusions.","PeriodicalId":151775,"journal":{"name":"2013 7th International Conference on Systems Biology (ISB)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 7th International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2013.6623790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An epidemic model with infectivity and recovery in both latent and infected period is introduced. Utilizing the LaSalle invariance principle and Bendixson criterion,the basic reproduction number is found, we prove that the disease-free equilibrium is globally asymptotically stable when the basic reproduction number is less than one. The disease-free equilibrium is unstable and the unique positive equilibrium is globally asymptotically stable when the basic reproduction number is greater than one. Numerical simulations support our conclusions.
潜伏期和感染期具有传染性的SEIR流行病模型的全局稳定性
介绍了一种具有潜伏期和感染期传染性和恢复期的传染病模型。利用LaSalle不变性原理和Bendixson判据,找到了基本再生数,证明了当基本再生数小于1时无病平衡点是全局渐近稳定的。当基本繁殖数大于1时,无病平衡是不稳定的,唯一正平衡是全局渐近稳定的。数值模拟支持我们的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信