{"title":"Comparison of Feedforward and Recurrent Neural Network in Forecasting Chaotic Dynamical System","authors":"Engin Kandıran, A. Hacinliyan","doi":"10.5824/1309-1581.2019.2.002.x","DOIUrl":null,"url":null,"abstract":"Artificial neural networks are commonly accepted as a very successful tool for global function approximation. Because of this reason, they are considered as a good approach to forecasting chaotic time series in many studies. For a given time series, the Lyapunov exponent is a good parameter to characterize the series as chaotic or not. In this study, we use three different neural network architectures to test capabilities of the neural network in forecasting time series generated from different dynamical systems. In addition to forecasting time series, using the feedforward neural network with single hidden layer, Lyapunov exponents of the studied systems are forecasted.","PeriodicalId":156438,"journal":{"name":"AJIT-e Online Academic Journal of Information Technology","volume":"749 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJIT-e Online Academic Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5824/1309-1581.2019.2.002.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Artificial neural networks are commonly accepted as a very successful tool for global function approximation. Because of this reason, they are considered as a good approach to forecasting chaotic time series in many studies. For a given time series, the Lyapunov exponent is a good parameter to characterize the series as chaotic or not. In this study, we use three different neural network architectures to test capabilities of the neural network in forecasting time series generated from different dynamical systems. In addition to forecasting time series, using the feedforward neural network with single hidden layer, Lyapunov exponents of the studied systems are forecasted.