{"title":"Two-Phase Multimodal Image Fusion Using Convolutional Neural Networks","authors":"Kushal Kusram, S. Transue, Min-Hyung Choi","doi":"10.1109/ICIP42928.2021.9506703","DOIUrl":null,"url":null,"abstract":"The fusion of multiple imaging modalities presents an important contribution to machine vision, but remains an ongoing challenge due to the limitations in traditional calibration methods that perform a single, global alignment. For depth and thermal imaging devices, sensor and lens intrinsics (FOV, resolution, etc.) may vary considerably, making per-pixel fusion accuracy difficult. In this paper, we present AccuFusion, a two-phase non-linear registration method to fuse multimodal images at a per-pixel level to obtain an efficient and accurate image registration. The two phases: the Coarse Fusion Network (CFN) and Refining Fusion Network (RFN), are designed to learn a robust image-space fusion that provides a non-linear mapping for accurate alignment. By employing the refinement process, we obtain per-pixel displacements to minimize local alignment errors and observe an increase of 18% in average accuracy over global registration.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The fusion of multiple imaging modalities presents an important contribution to machine vision, but remains an ongoing challenge due to the limitations in traditional calibration methods that perform a single, global alignment. For depth and thermal imaging devices, sensor and lens intrinsics (FOV, resolution, etc.) may vary considerably, making per-pixel fusion accuracy difficult. In this paper, we present AccuFusion, a two-phase non-linear registration method to fuse multimodal images at a per-pixel level to obtain an efficient and accurate image registration. The two phases: the Coarse Fusion Network (CFN) and Refining Fusion Network (RFN), are designed to learn a robust image-space fusion that provides a non-linear mapping for accurate alignment. By employing the refinement process, we obtain per-pixel displacements to minimize local alignment errors and observe an increase of 18% in average accuracy over global registration.