Two-Phase Multimodal Image Fusion Using Convolutional Neural Networks

Kushal Kusram, S. Transue, Min-Hyung Choi
{"title":"Two-Phase Multimodal Image Fusion Using Convolutional Neural Networks","authors":"Kushal Kusram, S. Transue, Min-Hyung Choi","doi":"10.1109/ICIP42928.2021.9506703","DOIUrl":null,"url":null,"abstract":"The fusion of multiple imaging modalities presents an important contribution to machine vision, but remains an ongoing challenge due to the limitations in traditional calibration methods that perform a single, global alignment. For depth and thermal imaging devices, sensor and lens intrinsics (FOV, resolution, etc.) may vary considerably, making per-pixel fusion accuracy difficult. In this paper, we present AccuFusion, a two-phase non-linear registration method to fuse multimodal images at a per-pixel level to obtain an efficient and accurate image registration. The two phases: the Coarse Fusion Network (CFN) and Refining Fusion Network (RFN), are designed to learn a robust image-space fusion that provides a non-linear mapping for accurate alignment. By employing the refinement process, we obtain per-pixel displacements to minimize local alignment errors and observe an increase of 18% in average accuracy over global registration.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fusion of multiple imaging modalities presents an important contribution to machine vision, but remains an ongoing challenge due to the limitations in traditional calibration methods that perform a single, global alignment. For depth and thermal imaging devices, sensor and lens intrinsics (FOV, resolution, etc.) may vary considerably, making per-pixel fusion accuracy difficult. In this paper, we present AccuFusion, a two-phase non-linear registration method to fuse multimodal images at a per-pixel level to obtain an efficient and accurate image registration. The two phases: the Coarse Fusion Network (CFN) and Refining Fusion Network (RFN), are designed to learn a robust image-space fusion that provides a non-linear mapping for accurate alignment. By employing the refinement process, we obtain per-pixel displacements to minimize local alignment errors and observe an increase of 18% in average accuracy over global registration.
基于卷积神经网络的两相多模态图像融合
多种成像模式的融合对机器视觉做出了重要贡献,但由于传统校准方法执行单一全局校准的局限性,仍然是一个持续的挑战。对于深度和热成像设备,传感器和透镜的特性(视场、分辨率等)可能会有很大的差异,这使得每像素的融合精度变得困难。在本文中,我们提出了AccuFusion,一种两阶段非线性配准方法,用于在每像素级别融合多模态图像,以获得高效准确的图像配准。这两个阶段:粗融合网络(CFN)和精炼融合网络(RFN),旨在学习一种鲁棒的图像空间融合,为精确对准提供非线性映射。通过采用细化过程,我们获得了每像素的位移,以最小化局部对准误差,并观察到平均精度比全局配准提高了18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信